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SECTION 1
INTRODUCTION

1.1 BACKGROUND

For more than two decades it has been weil known that propaga-
tion through the natural ionosphere can cause degradation of satellite
signals (Yeh and Swenson, 1959; Skinner, et al., 1971; Pope and Fritz,
1971; Taur, 1976; Whitney and Basu, 1977; Johnson and Lee, 1978; Mullen,
et al., 1978; Paulson and Hopkins, 1978; Fremouw, et al., 1978). It has
also been widely reported for a similar period of time that the ionosphere
is subject to even greater disturbances following high altitude nuclear
explosions (Matsushita, 1959; Keyes and Tinsley, 1962; Rothwell, et al.,
1963; Maeda, et al., 1964; Arendt and Soicher, 1964; Zinn, et al., 1966;
Boquist and Snyder, 1967; Hoerlin, 1976; Glasstone and Dolan, 1977; King
and Fleming, 1980). In both natural and artificially disturbed iono-
spheres, electron density irregularities can cause random variations in
the amplitude and phase of a propagating wave. Such signal variations are
called scintillation or fading and have been observed on satellite 1inks
through the naturai ionosphere at frequencies up to the GHz range (Taur,
1976; Fremouw, et al. 1978).

If all frequency components of the received scintillating signal
vary essentially identically with time, the propagation channel is re-
ferred to as nonselective or as a flat fading channel. When the scintil-
lations exhibit statistical decorrelation at different frequencies within
the signal bandwidth, the channel is referred to as fregquency selective.

Frequency selective scintillations are therefore encountered
when the bandwidth utilized by a communication link exceeds the coherence
bandwidth of the ionospheric channel. This situation is more likely to
occur when the system bandwidth is large, as in spread spectrum systems.

15




Such systems typically employ either direct sequence spectrum spreading

3 over a large instantaneous bardwidth, or carrier frequency hopping of a
small instantaneous signal spectrum over a large bandwidth. The effects
of frequency selective scintillation are quite different for direct
sequer.ce and frequency hopped systems (Bogusch, et al., 1981). Only the
case of an instantaneous wide bandwidth signal is considered in this work
although the appropriate results presented here may easily be applied to
the latter case.

Frequency selective scintillation is much more likely to occur
9 if the ionosphere is more highly disturbed, as for example by nuclear

explosions or by chemical releases (Knepp and Rogusch, 1979). Increased
electron concentrations and irregular structure of the ionization can lead
to intense signal scintillations and potentially significant frequency
selective effects at frequencies as high as the 7-8 GHz SHF band (Knepp,
1977). Consequently, the effects of frequency selective propagation dis-
turbances are of importance to spread specirum satellite systems that may
have to operate in highly disturbed environments.

In this report, several techniques are presented to determine
the effects of ionization irregularities on a propagating wide bandwidth
signal subject to frequency selective scintillation.

1.2 MPS PROPAGATIOM SIMULATION

The multiple phase-screen (MPS) propagation simulation (Knepp,
g 1977; Wittwer, 1978) is the most general technique to obtain a solution to
the parabolic wave equation. In this solution technique, the ionized
mediun is divided into a finite number of layers. The field fluctuation
through each layer is calculated by replacing the layer by a phase-
E changing screen located at its center, whose statistical properties are
determined from the statistics of the electron density fluctuations within
the layer. At each phase-screen, the statistical phase is added to the
electric field phase and the wave is then propagated to the next phase-
~screen or to the observer. For wide bandwidth waveforms, the numerical
solution is obtained at a number of discrete frequencies centered about a
carrier frequency and then a time-domain solution is obtained by the use
of Fourier transform techniques.

16

™ g o




T

WP

Y 7 LW

The MPS propagation technique is quite general, and may be
easily applied to problems involving numerous, separated, layers of ioni-
zation characterized by spatially varying electron density power spectra.
Section 2 of this report describes the MPS numerical propagation simula-
tion and its application to wide bandwidth signal generation.

The MPS propagation simulation can handle all levels of iono-
spheric disturbances from the least severe, where only minor phase fluc-
tuations occur, to the most severe cases of frequency selective Rayleigh
fading. Since the MPS simulation provides a direct solution to the
parabolic wave equation, the results are exact given a certain description
of the~6ropagation environment. Thus the applicability of the MPS propa-
gation simulation depends upon the accuracy of the description of the
scattering medium. In most of the MPS results presented in this report,
the propagation environment is described by a one-dimensional K-3
power-1aw phase power spectrum. This spectrum corresponds to a K-
three-dimensional power spectrum for electron density fluctuations and is
representative of many in-situ measurements (Dyson, et al, 1974; Phelps
and Sagalyn, 1976) as well as numerical simulation of striation spectra
(Scannapieco, et al., 1976).

Section 2 of this report describes the MPS propagation simula-
tion in detail as it is applied to calculate realizations of received
t ime-domain signals,

The word "realization" is used in this report to refer to a
specific sample of a statistical process. For example, realizations of
the phase-changing screen are generated in a random manner based upon a
sequence of pseudo-random numbers generated numerically. However, once
these "random" numbers are generated, the phase-screen is completely
defined and known, Similarly, the wave field propagated through this
phase-screen is subject to exact calculation. However, a different
sequence of pseudo-random numbers will yield a different phase-screen
realizaticn and hence a different realization of the received electric
field.

17
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An important function of the MPS propagation simulation is to
serve as an intermediate step in the analysis of the effects on receivers
of a disturbed, ionized propagation environment. Thus realizations of the
received signal amplitude and phase are important results of the simula-
tion and in turn serve as direct input to detailed receiver simulations
(Bogusch, ot al., 1981; Knepp and Bogusch, 1979).

In Section 2 the MPS propagation simulation is applied to pre-
dict the effect of a large, striated barium cloud on a wide bandwidth
signal passing through the disturbed ionization. These predictions are
based on an analysis of several earlier barium releases (Prettie ard
Marshall, 1978) from which a model of barium cloud irregularity structure
was obtained. The barium cloud is then represented as a single phase-
screen in the MPS simulation. A large Gaussian phase lens is used to
model the mean or deterministic ionization effects from the barium cloud
and small level stochastic phase perturbations are added to represent the
ionization fluctuations. This model is quite general and has been applied
to describe several other ohserved barium clouds (Knepp and Bogusch,
1979). Results for the received wide bandwidth signal after propagation
through the barium cloud are presented and analyzed. Scattering from
various components of the barium cloud is considered independently and
then in combination to give a useful and intuitive understanding of the
elements of the scattering process that are important for wide bandwidth
signals.

The Defense Nuclear Agency barium release experiment discussed
above took place in December 1980 and the results for the wide bandwidth
propagation experiment were provided by Or. James Marshall (Marshall,
1982). The agreement between the 1979 predictions and the 1980 experiment
is quite remarkable and is discuszsed in Section 2.

Major emphasis in Section 2 is also given to a comparison of the
MPS results to theoretical results. As stated earlier, the MPS propaga-
tion simulation is the only effective method to provide signal realiza-
tions applicable to a wide range of propagation conditions, For compari-
son purposes, these signal realizations may be analyzed to obtain average
quantities for which analytic solutions or approximations can be found.

18
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MPS results for the two-position, two-frequency mutual coherence
function r(ax,aw) are compared to a theoretical, strong scatter approxima-
tion developed in Section 4. Although the theoretical calculation is more
restrictive than the MPS propagation technique, good agreement between
numerical and theoretical results is shown. As an additional comparison,
the time domain MPS results for the mean time delay and time delay jitter
of a wide bandwidth PN spread spectrum signal are compared to theoretical
moment method calculations (Yeh and Liu, 1977).

1.3 STATISTICAL SIGNAL GENERATION

In Section 3 a second analytical/numerical technique is describ-
ed to generate realizations of the received signal after propagation of a
wide bandwidth waveform through a layer of strongly turbulent media.
These statistical signal realizations are generated to have Rayleigh amp-
litude statistics (Fante, 1975) and to have spatial and frequency correla-
tion properties which obey the parabolic wave equation in the strong scat-
ter limit, Although these statistical signal realizations apply only to
the case of strong scattering, their generation requires only a fraction
of the computer resources required for signal generation by wide bandwidth
multiple phase-screen calculations. Furthermore, the limitation to the
strong scatter regime is not of great significance since frequency selec-
tive scintillation only occurs during strong scattering conditions.

This statistical technique follows the basic formalism described
in Wittwer (1980) and is based upon the solution for the two-frequency
mutual coherence function, r, for spherical wave propagation with trans-
mitter and receiver located on opposite sides of a thick finite layer of
ionized electron density irregularities. An analytic solution is obtained
for r in the strong scatter regime by use of the quadratic approximation
for the phase structure-function. The thin phase-screen approximation to
the thick layer is then utilized and great simplification to the analytic
expression for T is obtained. The relationship between the impulse
response function of the propagation channel and the two-frequency mutual
coherence function and its Fourier transform is then used to directly
obtain statistical realizations of wide bandwidth signals.




The accuracy of the thin phase-screen approximation is discussed
and several comparisons of statistical signals with signals obtained
directly from the MPS propagation simulation are shown in Section 3.

The analytic solution for r which is the foundation of this
statistical technique to generate realizations is presented in Section 4.

1.4 SOLUTION FOR TWO-FREQUENCY MUTUAL COHERENCE FUNCTION

An analytic solution is obtained in Section 4 for the two-posi-
tion, two-frequency mutual coherence function for spherical wave propaga-
tion. This solution provides the basis of the statistical signal genera-
tion technique presented in Section 3 of this report. It is assumed that
strong scattering ccnditions prevail and that the quadratic approximation
to the phase structure-function is valid. Here the ionized scattering
region occupies a thick, finite layer with transmitter and receiver
located in free space on opposite sides of the layer. General analytic
solutions are derived for two cases. In the first case the random slab is
represented by a one-dimensional power spectrum of electron-density fluc-
tuations corresponding to propagation through elongated irreqularities as
would occur for an equatorial satellite link to a ground station. In the
second case the random slab is represented by isotropic ionization irregqu-
larities which corresponds to the physical geometry of propagation along
the direction of the earth's magnetic field.

The case of isotropic irregularities represents a worst case
condition while the case of infinitely elongated irregularities leads to
less severe propagation conditions, Both cases taken together represent
the extremes of the range of results to be expected for propagation
through ionospheric fluctuations, or ionization irvegularities caused by
barium cloud instabilities or by nuclear detonations.

For both cases the complex general analytic results are simpli-
fied by use of the thin phase-screen approximation (zero slab thickness)
to obtain useful analytic expressions for T as well as the resulting power
impulse response function. It is shown that the impulse response to an
incident power delta function reduces to an exponential form in the strong
scattering limit and to a Gaussian form in the weak scattering limit. The
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Gaussian form corresponds to pulse wander and dispersion while the expo-

nential form corresponds to diffractive pulse spreading produced by multi-
path effects,

Since the thin phase-screen results developed in Section 4 are
used in the statistical signal generation technique described in Section
3, the accuracy of the thin-screen approximation is a matter of some
importance. This approximation is considered in some detail in Secticn 4
where comparisons of the thick layer cases to the thin phase-screen case
are presented for the S, scintillation index, the mean time delay, <+>,
and the time delay jitter, g 1t is found that the thin phase-screen

approximation gives exact results for <t> and accurate results for S, and
Cre

The simplification resulting in the thin phace-screen approxima-
i ion for the two-frequency mutual coherence function for spherical waves
~1so leads to simplified expressions for two very important parameters
that describe the propagation medium, These parameters are the signal
decorrelation distance (and time) and the coherence bandwidth. Both
parameters are defined and discussed in Section 4 and it is shown that the

signal decorrelation time and the coherence bandwidth both obey the prin-
ciple of reciprocity.
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SECTION 2
MPS NUMERICAL PROPAGATION SIMULATION

2.1 PHASE-SCREEN TECHNIQUES

Random variations in the amplitude and phase of a propagating
wave, called scintillations, are caused by propagation through a region in
which the electron density is irregularly structured. In ionospheric
plasmas, electron density structure is produced by plasma instabilities
which cause the ionization to break up into long filaments, or striations,
aligned with the earth's magnetic field lines (Linson and Workman, 1970).
The instability mechanisms accounting for ionospheric irregularities have
been the topic of debate for many years and are summarized in a recent
review (Basu and Kelley, 1978) . Roughly speaking, one may describe stria-
tions as long sheets or rods of relatively high electron density imbedded
in a background of lower electron density.

Figure 2-1 illustrates the geometry of the problem. Propagation
of satellite signals through a large striated region presents the problem
of radio wave propagation through a thick medium composed of random fluc-
tuations in the index-of-refraction. Consider for a moment a plane,
unmodulated carrier wave traversing the striated region. The wave first
suffers random phase perturbations due to variations in the phase velocity
within the medium. These phase variations in the propagating wavefront
introduce small random changes in the direction of propagation of the
wave. Thus portions of the once plane wavefront now propagate in different
directions relative to other portions. As the wave propagates farther,
diffraction or angular scattering causes constructive and destructive
interference which introduces fluctuations in amplitude as well as phase.
These time varying amplitude and phase fluctuations represent an undesired
complex modulation of the carrier.

The actual satellite signal encompasses a spectrum of frequen-
cies because of the transmitted modulation. This transmitted signal can

22




LT s i

iy b e

7AW

21

i iaure 2-1. Propagation of signals through a dicturbed transionospheric
communicat ions channel.
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be Fourier decomposed, and the propagation of each spectral component can
be analyzed. Because the phase velocity in an ionized medium denends on
wave frequency, each spectral component experiences somewhat different
phase perturbations and hence exhibits different amplitude and phase scin-
tillations after propagating to the receiver. Tnus the received signal
spectrum is distorted by both the temporal (time selective) and dispersive
(frequency selective) properties of the ionospheric channel.

Radio-wave propagation through an extended region of irregular-
ities has been studied for many years by numerous researchers (Bramiey,
1954; Ratcliffe, 1956; Mercier, 1962; Tatarskii, 1967 and 1971; Ishimaru,
1978 and references therein). Although partial solutions are available in
both weak (Tatarskii, 1967) and strong scattering cases (Fante, 1975 and
1981), no general analytical solution has been obtained even for a single
frequency, much less for a wide-band signal. However, the problem may be
solved by the use of an analytical/numerical technique known as the
multiple phase-screen (MPS) method (Knepp, 1977; Wittwer, 1978).

The use of phase-screen techniques to calculate the propagation
of electromagnetic waves was formulated as early as 1956 by Ratcliffe. A
number of researchers have used phase-screen techniques in the solution of
problems involving propagation through random media (Mercier, 1961,
Salpeter, 1967; Jokippi, 1970; Buckley, 1975; Rino, 1980). Receatly,
phiase-screen tochniques have been used in the simulation of adaptive
optical systems (Brown, 1975) and in the propagation of high energy laser
beams subject to thermal blooming (Fleck, et al., 1976). The use of
phase-screen techniques to calculate the propagation of wide bandwidth
signals is new.

The analytical foundation of the MPS technique was neatly set
forth by Ratcliffe in 1956. The striated ionosphere is represented by a
series of thin diffracting screens at various points along the propagation
path. Each screen is perpendicular to tne path and consists of a random
phase equal to the integrated phase change due to electron content within
the local region represented by the screen. An incident electromagnetic
wave emerges from the screen with this random phase shift superimposed.
Thus, at any position along the path, the wave can be represented by a
complex field whose ampiitude and phase are functions of position in a

24



plane perpendicular .o the nominal direction of propagation. The rippled
wave field can be thought of as a collection of uniform plane waves
traveling in slightly different directions. This collection of plane
waves, called the angular spectrum of the wave field, is given by the
spatial Fourier transform of the field distribution over the diffracting
screen. The angular spectrum can be propagated to the next diffracting
screen by introducing the free-space phase-shift. Transforming back to
spatial coordinates yields the incident electric field distribution, which
is then perturbed by the random phase-shift in this screen. The modified
angular spectrum is obtained and propagated to the next screen, and the
process is repeated until the field distribution is obtained at the
receiver plane.

In this section the MPS propagation simulation and its limita-
t jons are described with some results included from an earlier report
(Knepp, 1977). Time-domain results after propagation through a strong
dispersive Gaussian lens are presented and shown to be identical to analy-
tic results. Also shown are predictions of the expected dispersive and
scattering effects due to propagation of a pseudo-random phase-shift keyed
modulated waveform through a finite sized barium cloud. Measured results
from a later experiment have been provided by Dr. James Marshall and are
shown to be very similar to the pre-experimental predictions.

2.2 FORMULATION

In the parabolic approximation, let the electric field be
written

E(x,z,0) = U(x,z,0) exp(-ikz) (2-1)

so that the parabolic wave equation (Tatarskii, 1971) becomes

AU 25k Yy ak2an(x,z,0)U = 0 (2-2)

32U
52 3z

where k is the wavenumber and an is the variation in the index-of-refrac-
tion. For ionization irregularities
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2an = - %= - AN (2-3)

where ANy is the variation in the electron density, n. is the critical
electron density and ro is the classical electron radius (2.82x10-15m).

A derivation of Equation 2-2 is presented in Section 3 for the more gener-
al case where the propagation medium has a background ionization level.

In Equation 2-2 it is assumed that the mean or background ionization levei
js zero. In writing Equation 2-2 it is also assumed that the z-direction
is the direction of propagation. The striations or irregularities are
assumed infinitely elongated in the y-direction as would effectively be
the case for field aligned ionization and a satellite communication link
between a synchronous satellite and an equatorial ground station. These
assumptions 1limit the application of the MPS simulation to a two-dimen-
sional geometry with no variation in the y-direction. The simulation
could easily be extended to handle a three-dimensional geometry but at
considerably greater cost in computer resources.

Now assume that the ionized region has been divided into a
number of thin layers, with each layer perpendicular to the direction of
propagation. Consider a layer of thickness Az centered at zero z. For
small Az, the equation for propagation through this thin layer is obtained
from Equation 2-2 with the first term neglected. The remaining differen-
tial equation is easily solved.

az/2
U(X,E,w) = U(x,- E,m) exp -ikf m(x,z2',w)dz' (2-4)
2 2 -8z/2

The exponential quantity is simply the geometric optics phase change
imparted aft-r propagation through the layer. Equation 2-4 states that
transversal of a thin layer by a propagating wave is accomplished by
simply adding the phase change associated with the layer to the phase of
the electric field at the entrance to the layer,

Now collapse the irregularities in every thin layer to thin
phase-screens whose effect is represented mathematically by Equation 2-4.
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Now the ionized medium is represented by a series of thin phase-screens
separated by free-space. Equation 2-2 is valid for free-space propagation
in the region between the phase-screens if the last term of the equation
is neglected. The resulting equation is easily solved using Fourier

transform techniques. The solution for free-space propagation from z, to
z, can be written

G(K,ZZ,(») = 1—' fU(x922'm)e-1deX

2n

-~

= U(K,2zy,u) exp[iK2(z,~z,)/2K] (2-5)

e
U

U(xzge0) = f D(K,25u)e"™ ¥ak

[ G(K,z ww) exp[iK2(z,-z,)/2k+iKx dK (2-6)
1 y A}

Equation 2-1 may be inserted into Equation 2-6 to write the equaticn
governing free-space propagation in terms of the electric field

i E(x,25,u) = e~ k(25-2)) -['é(K,zl,m) exp [1K2(z -z ,)/2k+iKx JdK (2-7)

Equations 2-4 and 2-7 may be used to propagate an electromagnetic wave
from the transmitter to the receiver as follows. Assume that the incident
wave is a plane wave as it approaches the first phase-screen. Immediately
after passing through this phase-screen only the phase of the electric
field is affected according to Equation 2-4. The suitably modified elec-
tric field is then Fourier transformed to obtain E(K,z,w) at the exit of
the first phase-screen. Free-space propagation to the next phase-screen
(Tocated at z,) is then accomplished according to Equation 2-7. Equation
2-7 is implemented numerically in two steps; first a multiplication in
K-space by exp(iKz(zz-zl)/Zk) and then by an efficient fast Fourier trans-
form. This brings the wave to the next phase-screen where the above
process is repeated until the receiver plane is reached. Thus a numerical-
ly efficient solution to the parabolic wave equation is obtained.
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In effect this solution is equivalent to replacing the scatter-
ing mediun by a number of diffracting phase-screens separated by free-
space. For example, if three phase-screens are used to represent the
geometry of Figure 2-1, the resulting MPS geometry is shown in Figure 2-2.

This formulation in two dimensions assumes that no variations
occur in the third or y dimension. This is often a good approximation for
ionospheric propagation because the striated ionization is often elongated
parallel to the earth's magnetic field (Paulson and Hopkins, 1978; Fremouw
et al., 1978). The formulation can easily be extended to three dimen-
sions, at the expense of a significant increase in numerical computation.

2.2.1 Phase Power Spectral Density

Specific realizations of the random phase ¢(x) that define a
phase-screen are obtained by sampling a divtribution of phase-shifts
having statistical properties determined .y the statistics of the electron
density irregularities. These statistics are specified by the spatial
power spectral density (PSD) of the irregularities or, equivalently, by
their spatial autocorrelation function.

The relationship between the PSD of the phase and the PSD of the
in-situ electron density irregularities is obtained as follows. From
Equation 2-4 the phase that defines a phase-screen is given by

az/2
o(x) = - k f an(x,z')dz"' (2-8)

where the frequency dependence is temporarily omitted for convenience.
Using relation 2-3 the phase autocorrelation function can be formed

B,(£) = <a(x)¢"(x+£)>
Az/2 az/?
= .:-gxz f f <ANe(x,z)ANe(x+g,z')> dzdz' (2-9)
-02/2 -p2/2
28
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Figure 2-2. Multiple phase-screen representation of the geometry of
Figure 2-1.
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The quantity within the angle brackets is recognized as the correlation
function of electron density fluctuations By (&,2-2'). The double inte-
gral here can be reduced to a single integration by a change of variables
as explained in Papoulis, 1965, p. 325 with the result

AZ
B.(£) = r2x2pz 1-|z'|/8z)By (E,2')d2" (2-10)
o e _{z (1-1 ) N,

If Az is greater than the correlation length of the electron density
fluctuations, the contribution of the second term in the integration will
always be negligible so that the limits can be extended

B¢(g) = rgszz :Z' BNe(g,z')dz' (2-11)

Evaluation of this expression at £ = 0 gives for the variance of the phase
fluctuations

og = rgszz :£' BNe(g=0,z')dz' (2-12)

Multiplication of Equation Z2-11 by exp(-iKg)/2n and integration with
respect to £ gives

1 ¥ 'iKE - 2,2 ®© o ' -]’KE '
= __[ B,(£)e” g = (rdx AZ/ZW):!: _{BNe(g,z Je” "cdz'dg

= S (K) (2-13)
¢
The term on the left hand side of the equation is recognized as the phase
PSD and thus the one-dimensional phase PSD is simply related to the inte-
gral of the two-dimensional autocorrelation function of in-situ electron
density fluctuations. Now the relationships between one-dimensional PSD's
and two-dimensional PSD's and autocorrelation functions are
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Bi(x) = J'sy(K)e™®¥uk (2-14)
SI(K) = _1_ }BI(X)e-indx (2'15)
2r %

- % K x+iK,y

B,(xs3) =J S S,(KyKyde XTIV dkydky (2-16)
1 = -inx-iKyy

= _T 2-

Sz(Kx»Ky) ™5 :‘{‘:{ B,(x,y)e dxdy (2-17)

With these transform relations in mind it is seen that Equation 2-13 has
the form of Equation 2-17 and

S¢(K) anex AZ SNe(Kx’Kz 0) (2-18)

Equations 2-11 and 2-18 are general relationships between PSD's and auto-
correlation functions of phase and electron density fluctuations.

2.2.2 Power Law Phase PSD

A number of different phase PSD's are available for use in the
MPS propagation simulation. The most useful PSD is the power law form
with phase variance, outer scale, and inner scale specified as input. The
power law form is representative of many in-situ observations (Dyson, et
al., 1974; Phelps and Sagalyn, 1976) as well as numerical simulations of
striation spectra (Scannapieco, et al., 1976).

For this case the two-dimensional electron density PSD has the
form {Shkarofsky, 1968)

aﬁe(zn)'lzg( 21./L0)(""'2)/2 Km/z(zi.«f + K2+ 112

Sy (KoKy) = | (2-19)

e

m/2
K(m_z)/z( zi/LO) (9,1!1()% + KZZ + l/l.g)
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where K, is the Bessel function of the third kind. The PSD has a
(K2 + K2)-m/ 2

behavior for values of scale size between the inner scale 2; and the
outer scale Ly. The corresponding two-dimensional autocorrelation
function is given as

____________ém-z)/z -
- i 2 -
oﬁe (Lo /X2 + 22 + 1] } K(m_z)/z(l.ol/xz +22 + zf)
By (x,2) = =y
e JLm=2)/2 ¢ JL
(11/ o) (m_z)/z(z]/ 0)

(2-20)

The corresponding one-dimensional phase PSD is obtained with the aid of
Equations 2-12 and 2-18 as

o;(Zn)'l"zzi(zi/Lo)("‘“‘)/2 km/z(zi«)f + 1/L§)

S¢(Kx) = b (2-21)
K (2,L) (1..4(2 ; 1/L2)
(m-1)/z t 0 1T X 0
where
e o (2eayl )2 r2aer S0m1)/2 [24/Lo) (2-22)
e

K(m-2)/2 (li/Lo)

For the often used case of a K~3 one-dimensional phase PSD, m has a value
of three and in the limit that L >g;

2 . 2 2 -
o} 2(rex) L2 R (2-23)

2.2.3 Gaussian Phase PSD

A second useful phase PSD is the Gaussian form

= -1z 2 K22 -
S¢(KX) m Loo¢ exp[ KXL0/4] (2-24)

N
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which has the one-dimensional autocorrelation function

B¢(x) = o: exp[-xZ/Lg] (2-25)

For the Gaussian PSD the relationship between the phase variance and the
electron density variance is

2 = J- 2 2 -
% /n (rex) L0z oNe (2-26)
2.2.4 Phase-Screen Generation

In this subsection, the numerical technique to generate a phase-
screen realization for the numerical MPS propagation code is discussed.
The goal here is to generate a stationary, random function ¢(nax) which
represents the phase evaluated along the MPS grid. The spacing along the
MPS grid is ax and n is an integer representing the n'th point on the
grid. Typically 21% (16384) discrete points are used to represent the
functions in the x-direction transverse to the direction of propagation.
As will be shown, ¢(nax) is generated from initial knowledge of its PSD.
In continuous notation, the phase may be written as the Fourier transform

olx) = [ o)™ ek (2-27)

In the discrete® case, as used in the MPS code

N-1 .
o(nax) = ¥ ¢(maK)e
m=0

12amn/N g oo, ... N-1 (2-28)

Now if the Fourier transform of the phase was available, a phase-screen
realization could be easily generated by using Equation 2-28. For the
moment let us choose as the Fourier transform of the phase the quantity

* In this section all discrete sums are taken over a range of the index
from 0 to N-1.
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s(maK) = ro[S(maK)L/2x] 2 (2-25)

where S(maK) represents discretz values of the known desired phase PSD.

In the following it is provan that this choice is correct. Here K = 2u/L,
L is the length of the MPS grid, ax = L/N and therefore axXK = 2x/N. ry
is a complex number given as the sum of two independent Gaussian random
variables with zero mean and variances of unity

tm = /172 (9y + i9) (2-30)

Successive values of g, and g,, may bv obtained numerically by samp-
1ing from a pseudo-random sequence of »umbers with a Gaussian distri-
bution. The factor of /1/2 is included 50 that

rr¥s =g (2-31)

mn mn

It is apparent that with the above choice for rp, ¢(nax) is the sum of a
sequence of Gaussian variates and thus its real and imaginary parts both
have a Gaussian or normal probability dist~ibution. Since the phase of an
individual phase-screen is a real quantity, one may choose either the real
or imaginary part of ¢ computed in this manrer. Or since the real and
imaginary parts are independent, each discrete Fourier transform may be
used to generate two phase-screens with a savings in computer time.

Now since the r; are independent, it is apparent that the
Fourier coefficients defined in Equation 2-29 are also independent. Thus
the phase power spectrum has the general form

<H(maK) ¢* (naK)> « 8., S(MAK) (2-32)

which is a requirement if the phase is to be stationary (Tatarskii,
1971). That is, if Equation 2-32 is satisfied, then the phase autocorre-
lation function <¢(max)e¢*(nax)> depends only on the separation distance
(m-n)ax as it must for a stationary randor variable.

In order to prove the validity of the choice of Equation 2-29 to
give a realization of the phase-screen it is convenient to calculate the
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discrete autocorrelation function. Under the ergodic hypothesis, ensemble
averages or expectations of random fields may be replaced by spatial
averages. Thus the phase autocorrelation function may be written

B¢(e) = <p(x+g) ¢*(x)>

L
_t_ f o(x+£) ¢*(x)dx (2-33)

0

In the discrete case of interest here

B (kax) = 1 T o(naxtkax) ¢*(nax) ax (2-34)
¢ L L

Now the Fourier transform of ¢ and ¢* given by combining Equations 2-28
and 2-29 may be used in Equation 2-34 to obtain

B¢(kAX) = 1.2 D) (L/ZW)[S(mAK)S*(m'AK)]1/2
Lnmom

cre i2mm(n+k) /N ~i2m'n/N 2, (2-35)
Now
3 - '
) e12nmn/N e i2om' n/N NG, (2-36)
n
So that Equation 2-35 becomes
B, (kax) = ] S(mak)eZ™/N yp 42 (2-37)
m

A comparison of the above equation to the continuous relationship between
PSD and autocorrelation function as given by Equation 2-14 shows that the
PSD of the numerically generated phase is S(mAK)|rm|2. It is apparent
that different values of the index m correspond to different spatial-
frequency components of the PSD. Since |rm|2 is the sum of the squares
of two Gaussian variates, each of the Fourier components of the PSD of an
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individual phase-screen is a chi-squared variate with two degrees of free-
dom and a mean value of S(maK). Thus for any given phase-screen realiza-
tion, the phase PSD will not, in general, be identical to the desired

PSD. However, the average PSD of many such phase realizations may be
obtained by taking the expected value of Equation 2-37. Since <|rm|2> =1

AIG[B (kex) ] = | 5(mak)e 12K/ N (2-38)
m

Therefore the average PSD obtained from many phase-screen realizations is
the desired PSD, S(maK), and Equation 2-29 is correct.

2.2.5 Criteria For MPS Application

The application of the MPS propagation code requires that the
electric field and the phase be sperified at a discrete number of grid
points. The number and spacing of these points must in general satisfy
the following criteria: 1) the phase distribution of a phase-screen must
adequately represent the actual phase, 2) the wave should propagate with-
out angular aliasing, and 3) edge effects or angular scattering off the
end of the grid should be minimal.

[y

2.2.5.1 Phase Representation

Adequate phase representation is assured if the phase-screen
length L is at least 5 to 10 times as large as the phase decorrelation
distance or equivalently the outer scale.

L>5L
0

The spacing between grid points, Ax, should be several times smaller than
the inner scale. Thus

ax < zi/3
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“he change in phase from one grid point to the next should be less than «
to satisfy the Nyquist sampling theorem. Mathematically

o{xy) = olxy) < x s Xp = Xy = AX

n terms of the distance between sample points ax, this constraint can be
written

d¢’
ax |} <
Idx "

7his inequality can be written in an rms sense as follows. Under the
ergodic hypothesis discussed previ~usly the autocorreiation function can
be written

L
B,(5) = <oLere)¥()> = T J olxre) ¢*(x)ox (2-39)
0

Taking the second derivative with respect to f and integrating by parts

d28

- . <'/_d¢(X+€) d¢*(x)> (2-40)
dF,z N\ dx dx

Ecuation 2-4C states the relaivionship heiweer the autocorrelation function
cf the derivative of the phase and the s<cond derivative of the phase
autocorrelation function. In a mean sqare sense then

) da2 d?8 (&)
=

dx/ / de2

£=0

Thus in an rms sense the abcve 1init on the grid spacing Ax may be
expressed as
[ @8,0e)| \-1/2

AX<1!{-_.._..
|

€=0
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For a Gaussian phase PSD the second derivative term may be calculated from
Equation 2-25 as -Zoi/Lg so that the necessary condition is

=¥ 7Y

ax < ﬂLO//Z o¢

Y 2.2.5.2 MWave Propagation

In order to adequately represent propagation in free-space by
the use of the Fourier transform relationship of Equation 2-7, it is
necessary that the various functions involved be accurately sampled. To
satisfy the Nyquist sampling criterion the difference in the function

K2az
2k

must be less than n when evaluated from one value of K to the next. Since
the maximum value of K is aN/L where N is the number of grid points and L
is the grid length, the necessary condition is

Sh il i * ol St Somii ]

n2N2az _ #2(N-1) 2az <

2kL 2 2kL 2
3 or
n2NAz < x
kL2
or
8z < 2Lax/

This condition may be relaxed somewhat in practice if the phase PSD

{ is very small at large values of the wavenumber, K. In that case the high
wavenumber values are cut off by the phase power spectrum and small
inaccuracies in the phase are relatively unimportant.

2.2.5.3 Edge iffects

Because of the discrete nature of the MPS grid representation,
energy leaving one side of the grid appears on the other side. As the
propagation distance z increases this effect becomes more important. This
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: effect must be controlled for a propagation solution to be valid. Since
k the scattering angle is given by

1d
9 = T (2-41)

Q.
0-

where ¢ is the phase at a phase-screen, the energy scattered at an angle @
) travels a distance z¢ perpendicular to the direction of propagation after

' propagating a distance z. To adequately insure against edge effects it is
necessary that the MPS grid size L be greater than ze for each propagation

For a Gaussian phase PSD, the second derivative is —202/L2 so that the
necessary condition is

step. Thus
., L>_.| |
: dx
§ This expression may be represented in a mean square sense as in Section
: 2.2.5.1 as
£ 2
E L>_z_ _dB¢(E) 1/2
! k de? £=0
E
|

g,A2
Ly _®
V2 nLO

to minimize edge effects.
2.3 APPLICATION TO A GAUSSIAN LENS

In this section the numerical MPS propagation code is applied to
the problem of scattering by a single, deterministic Gaussian phase lens.
For this example of scattering from a non-random structure, theoretical
results are obtained using the Fresnel-Kirchhoff integral equation and are
shown to be identical to the numerical MPS results.

For this example a single Gaussian phase lens given by

o(x) = - % exp(-xz/rg) (2-42)

39

B R el




is used at the first phase-screen location (z=0) with ¢o Chosen as 10
radians and r, set equal! to the wavelength A. Since ¢(x) is negative

this Gaussian lens corresponds to a decrease in the ionization level below
the ambient and acts as a convergent or focusing lens. A pnsitive phase
would correspond to an increase in ionization and would act as a divergent
lens.,

The intensity I = |E|2 was observed as a function of distance
from the lens, z/x as indicated in Figure 2-3. In this figure the
observation screens are aligned, so that features of the diffraction
pattern can be easily followed for changing propagation distance z/a.

The focal length for a Gaussian lens is given by (Salpeter,
1967)

F = kr§/2¢>0 (2-43)

where k is the wavenumber 2ax/x. Taking ro = xand ¢_= 10 radians, the
focal length F/x is 0.31 which corresponds quite we]? with the value of
z/x» = 0.5, shown in the figure where the intensity in the diffraction
pattern at x = 0 builds up to a maximum. At values of z/x greater than
the focal length, the diffraction pattern exhibits increasingly more com-
plex patterns associated with interfering rays coming from the edges of
the lens, rather than from the center.

An analytic relationship between the electric field at z = z,
and z = z, is given by the Fresnel-Kirchhoff integral (Ratcliffe, 1956)

E(x,2,) = [-i2n(z,-2))/k] 2 oik(25-2)

x exp{-ik(x-£)2/2(z,-2z,)} E(g,2,)dg (2-44)

where E(x,z;) is the electric field as a function ¢f x in the z = z,
plane. For an initial electric field in the z = 0 plane given by

E(x,0) = exp[-i¢0 exp(-xz/rg)]
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Equation 2-44 may be written as an infinite series by expanding
exp[-igoexp(-x2/ry2)] in a Taylor series as

>

e =°f X (2-45)

S
o
>

The resulting integral over ¢ may then be analytically performed
with the use of standard integral tables (Gradshteyn and Ryzhik, 1965).
The resulting electric field in the z = z, plane may be expressed as

by 2
E(x,2) = exp[1kfilkx /2z)
vikz
[ . n
(Gog)” /on i \-u/2 - x2%/222
X —— - | T exp — (2-46)
n! k2r2 kz 2n i
n=0 0 PE -
k‘r§ kz

This series is easily summed numerically and the results for several
values of z/x are shown in Figure 2-3 to be identical to the MPS code
calculation for z/x < 2.

For z/x = 10 the multiple phase-screen calculations deviate from
the theoretical results because energy which has left one side of the grid
is coming back into the other side (this is the well known wrap-around or
aliasing effect in discrete Fourier transforms). This point illustrates
that care must be taken in the application of the MPS techniques to avoid
erroneous numerical results.

2.4 APPLICATION TO A RANDOM PHASE-SCREEN

This section contains a second application of the multiple
phase-screen propagation code to a problem for which analytic results are
available - propagation through a thin phase-screen characterized by a
Gaussian power spectral density. For this example, only one phase-screen
is used to characterize the random medium. The screen is located at z= 0
and is generated with a phase power spectral density (PSD) of

N
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Figure 2-3(a). Diffraction pattern of a Gaussian lens--numerical
results from simulation on left-hand side versus
theoretical results on right-hand side.

a2




Numerical Results

8 - _
6] /A= .8
4.
1
2 ¥
‘ ~
| ; |
b Theoretical Results
? 8 : : 8 . . .
| = 1 1 = 1
~ 6 /) = 2.0 6] Z/y = 2.0 ]
> 4 4 “ i
: 22 I N2 M\n ”N 1
E 2 ol U\I\M . = 9 . : .
h >
8 |r T v T g 84 T Y
ejl Z/» = 10.0 | 2 Z/x = 10.0 |
4 ’ : 4 ]
2 1\"\ N ) \ AJ\ 21 \ 1
0 .dJ Wi, A SN A AW
-10 -5 0 5 10 -10 -5 0 5 10
‘Distance {(x/}) Distance (x/)\)

Figure 2-3(b). Diffraction pattern of a Gaussian lens--numerical
results from simulation on left-hand side versus
theoretical results on right-hand side.
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- 1 -1/ 2 212 -
XORSS Uyo2 exp [- KALZ/A] (2-47)
where the scale size i, is chosen as ) and the phase standard deviation
o, takes on the values 0.1, 1.0, and 10.0 radians. The MPS grid here is
comprised of 2048 cells which represent a total Tength of 30a.

In the MPS simulation a plane wave then propagates through the
single phase-screen and is observed at a number of different receiver
plane locations corresponding to different values of the propagation dis-
tance from the phase-screen. At each receiver plane location defined by a
value of z., the received electric field E(x,z.) is observed.

To obtain statistical results for the received signal, the simu-
lation is exercised ten times with ten different phase-screen realizations
(each screen is generated using a different sequence of random numbers as
discussed previously). Figure 2-4 shows a plot of one of the ten phase-
screen realizations as a function of x/Lo, the normalized distance along
the MPS grid perpendicular to the direction of propagation. Note the

5-0 LA ﬁT—rl LB le‘ 'T' T T l'r' T r r"lv'

Lo
(3]

['l"ll’lll
PN S R R

PHASE (RADIANS)
S

PR S R U TR I »

_5'0 Ad el (1 Llllll L, llll A Lll LLIIJJ;A i1

5 10 15 20 25
X/Lo

()
o

Figure 2-4. Realization of phase for a Gaussian PSD.
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L rather smooth plot with very little rapid phase variation. This plot is
3 characteristic of a Gaussian PSD. The figure shows the phase over the
entire MPS grid; note that the phase is generated to be continuous at the
edges of the grid. This behavior is necessary to avoid errors associated
with taking the Fourier transforms of discontinuous functions. Phase-
screen realizations generated by the MPS code are always continuous as
demonstrated here. Similarly, the received electric field also possesses
this same type of continuity across the boundaries of the MPS grid.

The code has input options to provide for some statistical
analysis cf the generated phase-screens. Figures 2-5 and 2-6 show a
comparison of the desired phase-screen PSD and autocorrelation functions
versus the computed PSD and autocorrelation functions averaged over ten
realizations. The phase standard deviation, T4 WS 1 radian in the
plots. As can be seen in the plots, the agreement between the desired PSD
and autocorrelation functions and their numerically generated equivalents
is quite good.

-

‘ Figure 2-7 shows another example of a phase-screen realization
r which is generated using the same string of pseudo-random numbers as in
the previous case. Here the phase PSD is a K3 power law form with outer
scale equal to the wavelength. Note that the large scale structure in
both screens is quite similar since both are based on the same random
number sequence. The appearance of the small scale structure in Figure
2-7 is caused by the relatively slow fall-off oi the power law PSD with
increasing wavenumber (decreasing scale size). Figure 2-8 shows a com-
parison of the MPS generated phase PSD averaged over ten realizations with
the desired power law PSD. Again, in keeping with the results shown in
the previous example, the agreement between numerical and desired results
is quite good.

L

An additional check on the results of the MPS code for a Gaus-
sian PSD is made possible by comparing analytic results for the scintil-
lation index with theoretical results. The S, scintillation index is
defined as the normalized variance of the received power |E|2, where E is
the received complex voltage

§,% = <(|E|2-<|E|2>)2> /<|E|2>2 (2-48)
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Figure 2-6. Comparison of correlation function of numerically generated
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S, SCINTILLATION INDEX
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PROPAGATION DISTANCE (Z/X)

Figure 2-9. S, scintillation index for Gaussian spectrum. The solid lines

are analytic approximations valid for the weak-scatter case.

For weak scattering SL,2 is given in the thin phase-screen approximation
(Salpeter, 1957) as

Sy% =4 [18,(K) sin?[K?2/2k oK (2-49)

This integral is easily evaluated for the case of a Gaussian PSD and is
plotted as a function of z/x in Figure 2-9 for the three values of o of
0.1, 1.0, and 10.0 radians. The numerical results are shown as circles in
this figure and connected with dashed lines. Note the excellent agreement
for small values of ¢, and small values of the propagation distance z/x
where the weak scattering theory holds. For the larger values of z/\, and
a4 1.0 radian the weak scattering result of Salpeter is no longer valid;
in this case the scintillation index saturates at a value of unity as is
predicted on theoretical grounds (Fante, 1975) and as is predicted by this
and other numerical MPS calculations.
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2.5 WIDE BANDWIDTH MPS CALCULATIONS

In the preceding formulation and examples, the MPS propagation
simulation was applied to a single wave frequency. For dispersive or fre-
quency selective ionospheric communication channels, it is necessary to
first determine the Fourier components or spectrum of the transmitted
signal. Then each of these Fourier components is propagated through an
identical sequence of phase-screens. If ¢.(x) is the phase distribution
for the center or carrier frequency, wc, then the corresponding phase
shift at another frequency in the signal bandwidth is

“e
0,(x) = = 6. (x) (2-50)
Once each signal Fourier component has been transmitted, then a Fourier
transform is applied to obtain the resulting time-domain signal at the
receiver.

Now if the transmitted waveform consists of a complex envelope
modulated on a carrier it is shown in Section 3 that the received waveform
can be expressed in terms of a complex modulation envelope as

‘i(w t+8 )
o0
v(x,zr,t) = Re e(x,zr,t-td)e (2-51)
where the complex envelope is given by the Fourier transform
e(x,2,,7) = (l/Zn)-[M(v) U(X, 2,5 vhug)e ' VTdv (2-52)

M(v) is the spectrum of the transmitted signal envelope and U(x,z,,v) is
the solution to the parabolic wave equation for the case of irregularities
infinitely elongated in the y-direction. For simplification in this
section it is assumed that mean ionization effects are negligible in com-
parison to stochastic effects. In that case U(x,z.,v) is a realization

of the solution to the parabolic wave equation given by the MPS simulation
for a particular value of frequency v. 6, is the total mean phase shift
(at the carrier frequency) and tq is the mcan group time delay. These
quantities are discussed in detail in Section 3 of this report.
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In the following sections, the MPS propagation simulation is
applied to obtain time-domain results for wide bandwidth signals after
propagation through ionization irregularities. Two interesting cases are
considered. In the first case time-domain results for scattering by a
strong Gaussian lens are presented and compared to theoretical results in
order to verify the MPS time-domain calculations. In the process some
interesting properties of the scattering process are noted and discussed.
In the second case the MPS code is used to predict the scattering proper-
ties of an ionized barium cloud through which a GPS-1ike pseudo-noise
spread-spectrum navigation signal is transmitted on a carrier at 100 MHz.

2.5.1 Time-Domain Propagation Through a Strong Gaussian Lens
As an example of the MPS propagation simulation when frequency
selective effects are important, the time-domain diffraction pattern of a

Gaussian lens is numerically determined and compared to theory. In this
example the single Gaussian phase lens is given by

%ofe

o(x,f) = exp [-(x-x )2/r2] (2-53)

where f. is the carrier or center frequency and is 100 MHz here, ¢ 15
70 radians, the lens is located at the center of the 50 km MPS grid and
has a half-width ro of 400 m. Since the phase here is positive this
Gaussian lens corresponds to an increase in jonization above the ambient
and thus is a defocusing or divergent lens.

The transmitted waveform consists of a single, band-1imited tri-
angular pulse modulated on a carrier at 100 MHz. The spectrum of the
transmitted pulse is given by

] 2
Te (sm uch) ,Ifl <1
nfTe =T
M(f) = (2-54)
0 , otherwise

where T. is roughly twice the total duration of this pulse.
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If the pulse were not band-limited to + 1/T., the time domain
waveform would be giVeQ\as

\\

® AN
Sin\\ueTc/Z\z {1
m (1) = Tc e dw (2-55)
wl /2\\}
te N
N
1 -1t s |t Te
Te

= (2-56)
, 0 , otherwise

where w = 2#f and the subscript « refers to the infinite bandwidth case.
In the case under consideration where the spectrum is limited to a total
bandwidth o1 2/T., corresponding tc the first nulls of the spectrum

M(f), the resulting transmitted time-domain waveform lacks the sharp tri-
angle edgos at ¢ = 0 and + T. and is a smooth function with continuous
first derivatives at these points. Also a loss of approximately 0.89 dB
occurs at 1 = 0 for the band-1imited case as compared to the infinite
bandwidth case.

1 The case of a single transmitted triangular waveform described
above has an exact analog to the case of a rang.1g system that utilizes a
pseudo-noise spread spectrum ranging signal. In this type of ranging
system a high bandwidth phase-shift keyed signal is transmitted as a
random sequence of pulses called a pseudo-noise (PN) code. A PN spread
spectrum receiver is then used to correlate a local, receiver generated
code with the actual received code. This correlation operation is per-
formed in the receiver code correlator hardware. The code correlator
output can be shown (Knepp and Bogusch, 1979; Bogusch, et al., 1981) to be
identical to Equation 2-51 where Equations 2-52 and 2-54 define the appro-
priate quantit.es required in Equation 2-51.

Therefore the time-domain results to be presented in this
section can be interpreted in either of two equally correct manners. On
the one hand the results for the received signal may be interpreted as the
received envelope after propagation of a single, band-1imited modulated
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triangular pulse through & disturbed channel. On the other hand, these
same results may be interpreted as the output of the code correlator of a
spread spectrum receiver. In the latter interpretation Tc is the dura-
tion of a chip of the pseudo-noise code and 1/T. is thus the chip rate.
In this example the chip rate is taken as 10.23x108 bps which is the rate
used in the Global Positioning System (GPS). Thus the value of T. is
approximately 97.75 nsec and the two-sided bandwidth 2/Te which effec-
tively limits the spectral region of interest is 20.46 MHz for this
example.

“or the case of no scintillation, U(x,z.,vtuwy) is unity and
the received signal is a smooth band-limited triangle. That is, for no
scintillation

U(X’Zr’V+wo) =1 (2-57)
and from Equation 2-52
17 ivr,
e(x,2,,1) = o :£'M(v)e dv = (1-11]/T.)g (2-58)

where the subscript BL indicates that the triangular waveform is band-
Timited.

For a non-selective fading case, where the MPS solution to the
parabolic wave equation, U(X,Zr,v+ub) is independent of frequency v

but the amplitude and phase of U are functions of x, U can be written as

U(x,2,ovta ) = U(x,2,) (2-59)

and the received complex envelope is then

e(x,2,,1) = U(x,z )(1=]7)/T )g (2-60)

In this case the complex envelope retains the triangular form of the
transmitted waveform in delay, but varies in amplitude and phase as a
function of x, the distance along the MPS jrid.
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Note that the received signal here is a function of x, the dis-
tance along the MPS grid, z,., the propagation distance, and 1, the time
delay. For a moving receiver, or for motion of the striations, the func-
tional dependence on x is converted into time dependence by inclusion of
an effective velocitv which converts motion of the line-of-sight path into
motion along the MPS grid. At a single position x or a single instant in
time x/vaff, it is possible to receive a signal that is non-zero over a
range of delay values, 1. This situation is the case when angular scatter-
ing acts to cause multipath effects where the signal propagates over a
number of slightly different paths and thus arrives at the receiver at
different delays corresponding to the different paths. The difference be-
tween time and time-delay in this context is discussed further in Section
3.2.3.1.

In the selective fading case U(x,zr,v+wb) is a random func-
tion of both x and v and the triangular waveform suffers distortion since
each spectral component of the signal experiences different degrees of
fading. The top portion of Figure 2-10 shows an example of the amplitude
of the received triangular pulse for the case of non-selective fading.
The bottom portions of the figure show examples of the received signal
during selective fading conditions. The resulting distorted waveforms may
be interpreted as being the superposition of a number of triangular
signals which have propagated over different geometric paths to reach the
receiver at a number of different time delays. Thus the distortion shown
is always extended or elongated in the direction of increasing or positive
time delay.

Most of the results to be presented for this deterministic exam-
ple are obtained using the Fresnel-Kirchhoff Equation 2-46 valid for a
single Gaussian lens discussed previously. These results were compared to
MPS calculations and found to agree. With this in mind the two different
but equivalent calculation methods will no longer be distinguished.

Now in the example under consideration, a single phase-screen
defined by 16384 grid points over a distance of 50 km is used to represent
the large Gaussian lens described by Equation 2-53. A plane wave

E(x,z=0) =1 (2-61)
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Figure 2-10. Example of envelope of wideband signal after
propagation through nonselective and frequency
selective propagation channels.

54




B

is incident on the lens. 64 distinct frequency rcomponents are used to
represent the signal spectrum over the null-to-null bandwidth of 20.46 MHz
centered at the carrier frequency of 100 MHz. Each of these frequency
components of the signal is then propagated through the environment which
consists of the single, strong Gaussian lens. The solution U(x,zr,v*ub)
to the parabolic wave equation is obtained via MPS simulation at 64 values
of the frequency v and several values of the propagation distance z,..

To obtain time-domain results for the received signal envelope Equation
2-52 is applied directly.

First consider the propagation of the single discrete frequency
component at 100 MHz. Figures 2-11 to 2-15 show the received signal
amplitude and phase for the 100 MHz frequency component of the spectrum at
distances of 3, 5, 10, 50, and 100 km from the lens location. It can be
seen that the effect of this defocusing lens is to cause energy to scatter
away from the center of the lens toward the edges. Thus at distances of 3
and 5 km the energy can be seen to focus near the edges of the lens with a
reduced signal level immediately below the lens center at a distance of
2ero on the figure. The geometric focal distance of a convergent lens of
this size is 2.4 km (Equation 2-43) which corresponds reasonably well with
the edge focusing observed at 5 km. At a propagation distance of 100 km
it can be seen from Figure 2-15 that the signal level has faded 16 dB over
a large 2 km region just below the center of the lens. At 100 km the usual
ringing which occirs in any diffraction pattern is evident. Also note from
Figure 2-'5 that ine signal level returns to 0 dB for distances greater
than 10 km from the lens center. This corresponds to the incident plane
wave which has propagated past the lens and remains undisturbed by the
lTens.

Figures 2-16 to 2-20 show the magnitude of the envelope of
the received time-domain signal |e(x,z.,t)| for propagation distances of
3, 10, 50, and 100 km from the Gaussian lens. In these tnree-dimensional
figures the time-domain signal received at each succeeding value of x is
plotted behind the preceding received time-domain signal. Thus the MPS
x-axis is now directed into the figure.

In Figure 2-16 a 4 km interval centered immediately below the
lens center is shown. Near the two ends of the x interval shown the
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Figure 2-11. Signal amplitude and phase at 100 Miz, 3 km from
a strong Gaussian lens.
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a strong Gaussian lens.
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Figure 2-15. Signal amplitude and phase at 100 MHz, 100 km from

a strong Gaussian lens.
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received signal is identical to the transmitted signal and has the smocth
shape of a band-1imited triangular waveform. Near the central portion of
the figure the received signal is delayed relative to the unperturbed
signal. This effect is caused by the effectively greater ionization
sampled by rays which travel through the center of the lens and hence
experience increased time delay. Figure 2-16 also exhibits the effects of
focusing which are shown as increases in signal level near the edges of
the lens. This behavior was discussed previously in conjunction with
Figure 2-11.

As the propagation distance increases the effects of diffraction
become more evident. Figure 2-19 shows the received signal at a propaga-
tion distance of 100 km. The two main effects of the Gaussian lens are
evident in this figure. First, in the central region of the figure cor-
responding to the region immediately below the lens center, there is a
minimum in received power caused by the outward scattering of waves away
from the lens center. Secondly, two secondary waves delayed up to 12
chips (1 chip = 97.75 nsec) with respect to the unperturbed wave are
apparent. These two secondary waves which appear on the figure as large
intersecting semicircles correspond to two outward propagating spherical
waves which originate from points on the two edges of the original
Gaussian lens, j.e., at x = + 400 m.

For the MPS calculation of the scattering properties of this
Gaussian lens, 16384 grid points are used to represent a spatial region
50 km in extent in the x-direction. In Figure 2-19 only 101 of these grid
points are shown over a region of 20 km. Thus much of the fine detail
available in the calculation is not shown in Figure 2-19.

Figure 2-20 shows a close-up of the MPS results for a propaga-
tion distance of 100 km. The 3 km region which extends to the center of
the MPS grid immediately below the center of the Gaussian lens is shown.
The fine details of the diffraction pattern at zero delay are shown as
well as the reduced signal level directly below the center of the lens.
Also note that the time delay of the wave that propagates directly through
the center of the lens is correctly given by ¢,/2nf which for a phase of
70 radians and a frequency of 100 MHz is 1.11x10~7 sec or 1.14 chips as
shown in the figure.
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Figure 2-16. Envelope of time-domain waveform 3 km from a
strong Gaussian len

lens.
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Figure 2-17. Envelope of time-domain waveform 10 km from a
strong Caussian lens.
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Figure 2-18. Envelope of time-domain waveform 50 km from a
strong Gaussian lens.

AMPLITUDE

Figure 2-19. Envelope of time-domain waveform 100 km from a
strong Gaussian lens.

63

O e e ]




'l"'v‘l'Tlvlvall'lvIII'II!l'lvl'vlvvvr'

= = S
A

==
~ x §\
%

'

AMPLITUDE
i

\__¥—m
\—\—‘——‘——_—————————
o Nmmm

0
-4 0

i
=
=

Pt e

N )
TIME DELAY (CHIPS)

Figure 2-20. Envelope of time-domain waveform 100 km from a
strong Gaussian lens.
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This comprehensive example involves direct comparisons of the
t ime-domain results from the MPS propagation simulation with theoretical
results for the case of a strong dispersive Gaussian lens. Although the
results are presented here as a straightforward example, many direct com-
parisons were performed during the work. Agreement bz2tween numerical MPS
and theoretical results was obtained in all cases.

2.5.2 Time-Domain Propagation Through a Striated Barium Cloud

In this section the MPS propagation simulation is applied to
predict the effect of a large, striated barium cloud on a wide bandwidth
spread spectrum signal. Here the propagation environment caused by a
striated, hour old, barium cloud is modeled as a single phase-screen. The
phase-screen model is based on analysis of' the data taken during the
STRESS barium release series (Prettie and Marshall, 1978) 48 minu*es after
the release of barium cloud Esther. The propagation results are intended
to provide predictions of the effects to be experienced during the PLACES*
barium release experiment scheduled for winter 1980. Back propagation
data provided by Dr. Prettie were utilized to provide a phase-screen
model* of Esther at 48 minutes that is comprised of two parts: 1) a large
deterministic Gaussian cloud which represents the unstriated portion of
the overall barium cloud and, 2) the striations represented by a K-3
power-law phase PSD with phase stanuard deviation g, of 33 radians at
the 100 MHz carrier frequency, with an outer scale of 390 m and an inner
scale of 10 m. The deterministic Gaussian lens is given by

280f

o(x,f) = exp{-[(x-25)/5]2} radians (2-62)
f. is the carrier frequency of 100 MHz and the distance x is given in
kilometers. Figure 2-21 shows the phase-screen realization of the bharium
cloud used in the MPS simulation. The entire 50 km length of the MPS grid
is shown in this figure. The component of the phase due to the

* The details of this model are fully discussed in "Predictions of GPS
X-set Performance During the PLACES Experiment," by Knepp and Bogusch,
1979. PLACES is the acronym for Position Location and Communication
Effects Simulation,
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Figure 2-21. Phase-screen realization as model or scattering
properties of barium cloud Esther.

deterministic Gaussian lens is plotted separately in the figure. Note
that the phase-screen shown represents only a single realization of the
bariun cloud and thus leads to only one realization of the received
signal, To obtain statistically significant results, a number of differ-
ent phase-screen realizations would have to be generated using different
random number sequences and the results of the propagation calculations
would have to be averaged.

In the PLACES experiment the transmitted signal is a spread-
spectrum pseudo-noise code at a chip rate of 10.23 Mps. The chip dura-
tion T. is again 97.75 nsec and the receiver is band-1imited to the
null-to-null bandwidth of the transmitted code, 20.46 MHz. Thus the
three-dimensional plots of the received signal to be shown in this example
are interpreted as the output of the receiver code correlator although no
error is committed using the interpretation of transmitted and received
triangular pulses discussed previously. As before 16384 MPS grid poirts
are used to represent an actual grid 50 km in length. Again 64 distinct
frequency components are used to represent the 20.46 MHz bandwidth.
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For this example results are obtained with the deterministic
Gaussian lens alone as well as with the entire barium cloud model. Figure
2-22 shows the time-domain signal scattered by the deterministic Gaussian
lens alone at a propagation distance of 100 km. As the central point
directly below the center of the barium cloud is approached from either
side, increasing delay is experienced because of the increasing ionization
(in the form of increased phase) along the propagation path. Directly
below the cloud center the delay should be

) 280

- = 445.6 nsec (2-63)
2nf.  2n + 100 x 10°

or 4.56 chips as shown on the plot. Also note the increased pulse spread-
ing in the time-domain which is apparent for that part of the received
signal subject to the largest delay. This dispersive spreading is caused
by the increased ionization near the center of the Gaussian lens. Finally
this large barium cloud is also acting as a divergent lens to direct rays
away from the lens center towards the edges of the lens. This slight edge
focusing is apparent in the increased signal level near the barium cloud
boundaries about 5 km from the center point.

Now consider the scattering effects of the complete PLACES bar-
iun cloud on the propagation of a 10.23 Mbps PN spread spectrum signal.
Figure 2-23 shows the output of the receiver code correlator for the total
PLACES barium cloud model (deterministic cloud plus striations). The
entire 50 km MPS grid is shown in the figure by displaying the code
correlator output at 101 equally spaced locations along the x-direction of
: the MPS grid. Note the increased time delay at the central portion of the
cloud caused by mean electron density effects as modeled by the large
Gaussian lens. Since all the striations are confined to the central
region occupied by the barium cloud and each striation acts roughly as a
single Gaussian lens, it is easy to explain the appearance of the undis-
turbed reginn of delay space directly beneath the center of the cloud in
terms of the overlapping of a finite number of scattering patterns from
strong Gaussian lenses. The effect of a single strong Gaussian lens is
discussed in the preceding suSsection.
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Figure 2-22. Envelope of time-domain signal after propagation
through deterministic barium cloud.
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Figure 2-23. Envelope of received time-domain signal after
propagation through an ionized, striated
barium cloud.
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Only 101 of the 16384 MPS grid points are displayed in Figure
2-23 so that there appears to be little continuity between successive
individual code correlation functions. This strictly visual shortcoming
is remedied in the noxt figure.

Figure 2-24 shows the amplitude of the code correlator output
over the range from 26.50 km to 27.72 km corresponding to the scale shown
on the plot of the barium cloud phase, Figure 2-21. The cloud center is
located at 25 km on the MPS grid and so the 1.22 km region shown in Figure
2-24 is located just past the barium cloud center. Note how the overall
signal time delay spread is increasing as the distance increases. This is
due to the overlapping of the scattering patterns from the individual
striations which make up the random part of the barium cloud.

Results from the actual PLACES experiment were provided by Dr.
James Marshall (Marshall, 1982) and are shown in Figure 2-25. The actual
experiment and these results are described in the above reference and will
not be discussed here. However, it is noted that all the essential details
g of the experimental results were accurately predicted in advance by use of
numerical MPS propagation simulation techniques. A comparison of Figures
2-23 and 2-25 shows that the major scattering features including the
effects of the mean barium cloud and of the combined scattering pattern of
the irregularities is accurately predicted. The total predicted time
delay of around 30 chips is also in agreement in both figures. These
results indicate that the MPS simulation can be used to accurately deter-
mine the effects of variations in the quantities that describe the barium
4 cloud including mean jonization and electron density PSD.

2.6 HOMOGENEOUS FLUCTUATIONS - r COMPARED TO THEORY

In this section numerical results from the MPS propagation code
are compared to theoretical approximations for the two-frequency mutual
coherence function and for the mean time delay and time delay jitter. Here
the theoretical results for the two-position, two-frequency mutual coher-
ence function are developed in Section 4 for the case of a homogeneous
thick scattering layer. As explained in Section 4, the theoretical results
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Figure 2-24. Close-up of central portion of Figure 2-23.
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Figure 2-25. Received PN code correlator output, PLACES experiment,
first beacon rocket.
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are derived on the basis of a strong scattering assumption using a quad-
ratic expansion for the phase structure-function (Sreenivasiah, et al,
1976; Sreenivasiah and Ishimaru, 1979).

First a detailed comparison of the analytic two-position, two-
frequency mutual coherence function with several interesting MPS cases is
presented. Then the results from a large number of MPS cases are compared
to theoretical results on the basis of the e~ ! point of r(ax=0, af).

Consider the case of plane wave propagation of a wide bandwidth
signal through a strong scattering layer. The carrier frequency is 2.25
GHz, the phase standard deviation is 350 radians with a K~ 3 power-law PSD
between the outer scale of 1 kn and the inner scale of 10 m. The layer
thickness is 1000 km and, after passage through the layer, the disturbed
plane wave propagates an additional 1000 km in free-space. Ten equally
spaced sirigle phase-screens are used in the MPS simulation to represent
the thick layer. Each grid consists of 16384 cells or points which repre-
sent a spatial extent of 10 km.

A total of 32 discrete frequencies are used to represent the
signal spectrum over a two-sided bandwidth of 4.096 MHz. This bandwidth
corresponds to the null-to-null bandwidth of a pseudo-noise (PN) spread
spectrum code with a chip rate of 2.048x10° sec~! and with a chip duration
of 488.3 nsec. Equivalently this null-to-null bandwidth may be used to
represent a single modulated triangular pulse band-limited to 4.096 MHz
with the form

m{t) =1 - ||/Te, |1l <T¢ (2-64)

where T. is 488.3 nsec.

Figures 2-26 through 2-31 compare MPS results for the two-
frequency mutual coherence function r(ax,af) with the analytic results
given by Equation 4-72. Figure 2-26 shows the magnitude of T as a func-
tion of Af for parametric values of ax which correspond to multiples of
the distance between cells on the numerical MPS grid. The agreement
between the MPS and the analytic results is seen to be quite good for this
case with some bias toward a higher calculated correlation than predicted
analytically.
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One of the assumptions involved in the strong scattering theory
discussed in Section 4 is that the bandwidth of interest is small relative
to the center frequency so that the refractive index may be taken to be
independent of frequency within the frequency band of interest. As a
result of this assumption the analytic two-frequency mutual coherence
function is symmetric about the center frequency. As can be seen, the MPS
result for r is not symmetric about zero af but is close enough to justify
the analytic approximation. Since the index-of-refraction is a function
of frequency, symmetry about zero af does not actually occur; but, as is
shown in the figure, this symmetry can be a valid approximation.

Figures 2-27 through 2-31 compare the MPS results for the phase
of r(ax,af) with the analytic resuits. The numerical MPS results are shown
at the same Ax values as shown in the amplitude results just compared.
Again the comparison is quite good especially in the most important region
near the carrier frequency where Af is small. This region is important to
time-domain calculations since in any modulation format most power is
transmitted at or very close to the carrier frequency with a gradual
decrease in transmitted power spectral density for frequencies farther
displaced from the carrier frequency.

Figure 2-32 shows an example of the time-domain results for this
homogeneous MPS case. The amplitude of the received triangular waveform,
|e(x,zr,r)| is plotted. 101 curves are shown in the figure as a
three-dimensional plot with curves for successive x-values plotted behind
those for prior x-values. Each individual curve represents the received
time-domain signal observed at an individual MPS cell, separated from the
next by 0.61035 m. This plot shows only the first 101 cells of the total
of 16384 generated but is quite useful to display the time-domain results
because of the homogeneous geometry.

Figure 2-33 shows the average pulse shape defined as the average
over x of the amplitude of the received complex envelope

<Jelx,z.,1)|>

r X

where the subscript on the angle brackets indicates that the averaging is
performed over x. The curve shown is obtained by averaging only the first
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Figure 2-32. Envelope of received time-domain waveform--first

101 x-values from MPS simulation.
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2048 points of the total 16384 point MPS realization. This case is dis-
cussed in more detail in Section 3 where a generated statistical signal
realization is compared to the MPS results shown here,

Figures 2-34 to 2-37 show additional comparisons of MPS calcu-
lations of the magnitude of T with the analytic, strong scattering results
of Section 4. The cases shown are calculated for a satellite communica-
tion system with an 80 MHz bandwidth spread spectrum signal at a carrier
frequency of 7.5 GHz. Al1 four cases have a K-3 one-dimensional phase
power spectrum.

In Figures 2-34 to 2-36, the MPS grid length is 30 km with
16384 grid points, the striation layer thickness, L, is 14000 km with a
free-space propagation distance z.-L of 1000 km (see Figure 2-2). In
all three figures the inner scale is 10 m. In Figure 2-34 o4 is 300
radians and the outer scale is 3 km. Figure 2-35 shows results for a
similar case to Figure 2-34 but with a smaller phase standard deviation,
a,, Of 150 radians. In the comparison shown in Figure 2-36, T4 is 100
radians and the outer scale is 1 km. The results shown in Figure 2-37 are
for a layer thickness of 1000 km centered 1500 km from the receiver
plane. Here the outer scale is 10 km, the inner scale is 10 m and the MPS
grid length is 100 km with 16384 grid points.

The agreement between the MPS results and the analytic results
is quite good for all these cases with the largest difference, on the
order of 20 to 30 percent rear the maximum frequency deviation af of 40
MHz shown for Figure 2-37. However, this case shows evidence of signal
focusing with a measured S, scintillation index of 1.15 characteristic of
non-saturated scintillation; as such the strong scattering assumption
involved in using a two term expansion for the phase structure-function is
invalid.

In order to make possible a comparison of a large number of MPS
calculations with analytic results, one feature of r(ax=0,f) is selected
for comparison purposes. Figure 2-38 shows the comparison of the selected
measure f.. The quantity f. is defined such that, if the magnitude of
r(af,ax=0) is larger than 1/e for fpi, < af < fpaxs then the value of
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Figure 2-34. Comparison of amplitude of r, single MPS
realization versus theory.
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Figure 2-35. Comparison of amplitude of r, single MPS
realization versus theory.
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fi. is fnax-Tmin- f. can thus be seer to be a measurs of the two-

sided bandwidth. Table 1 is a list of the two-sided bandwidth results
presented in the figure and shows the pertinent MPS parameters that are
used. In all cases a K=3 phase PSD is used, 16384 points comprise the MPS
grid and the inner scale is fixed at 10 m. L, is the outer scale, L is
the scattering layer thickness and z.-L is the free-space propagation
distance between the receiver plane and the nearest edge of the scattering
medium, Figure 2-2 depicts the MPS geometry. Because of the large number
of varying quantities that are used here, statistical measures that
describe the overall deviation are rather meaningless. Suffice it to say
that the results are in gquite nood agreement. This agreement is somewhat
unexpected because of the apparently severe limitations of the analytic
calculation. However, for the most part, the MPS cases described here do
indeed represent strong scattering situations and seem %o agree quite well

with the theory.
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Table 2-1. Analytic versus numerical MPS comparison of 1l/e poirts
of r(ax=0,f).

t c L L z -L f
o ¢ 0 r r
MPS THEORY

0.1 GHz 33.0 rad 0,39 km 10 km 100 km 1e2 MHz 1.2 MHz
0.15 22,0 0.39 10 100 6.2 5.5
0.20 164 5 0.39 10 100 16.4 14,3
1.38 300 5 1000 1000 9.6 8.2
1.38 500 5 1000 1000 4.4 3.9
2,25 350 ! 1000 1000 2,3 1.8 1
1.5 100 ! 14000 1000 46.5 42.4
7.5 150 3 14000 1000 84,0 82,5
7.5 300 3 14000 1000 315 8.1
7.5 300 3% 14000 1000 39.0 37.8
7.5 300 10 1000 1000 82,0 70,2

2.7 COMPARISON OF <1> AND o TO THEORY

An important measure of the effects of scintillation on propaga-
tion of wide bandwidth signals is the mean time delay and the time delay
standard deviation. These quantities are direct measures of the effects
of time delay jitter in the mean sense and also serve as useful character-
izations of the propagation environment.
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Now let us define the mean time delay <t> and the time delay
jitter op S

/T m
<'tm> = \-TZIE(X’Zr’T)IZ ! dT>x

(2-65)

<-£ |e(x,z‘r.,1)|2 dr>x
<> =41 (2-66)
o2 = <> - {2 (2-67)

T

where the subscript x on the angle bracket indicates that the average is
obtained over the x-values along the MPS grid. e(x,z.,t) is the
received complex envelope as defined by

L -]

e(X,2,,7) = _;_ M) U(x,zr,vfmo)ei“dv (2-68)

w

where M(v) is the transmitted signal spectrum and U(x,z,,vtuw,) is a
realization of the solution to the parabolic wave equation at a frequency
vtwg. It is apparent that U(x,zr,ub) is the received signal amplitude and
phase at the carrier frequency. In the comparisons to be shown in this
section, the transmitted signal is always a band-limited triangular wave
with a spectrum given by Equation 2-54.

The ensemble average defined in Equations 2-65 to 2-67 is
obtained in the case of a numerical MPS calculation by averaging the
results over the MPS calculation grid, which here means averaging over all
x-values. As can be seen, <> and g, are both functions of the receiver
location z., but this dependence is omitted for notational convenience.

The numerical MPS results are to be compared to results derived
following the moment method formulation of Yeh and Liu (1977), with the
single exception that the ionization irregularities are assumed elongated
infinitely in the y-direction so as to maintain the MPS geometry. The
moment method results can be derived as
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xog(er-L)|A2|

s

<

(2-69)

41r(nvo

N
i}

t2(0) +

£ I Qa
onje N

b 2 p2
A2 A
+ 207 T2 (1222 - 16Lz. + 6L2)
24n2w§A§ r r

2 42
OXAQ
.

2 2
2n Aowo

(325 -3z, + L?) (2-70)

3 where L is the thickness of the ionized region and the free-space
propagation distance to the receiver is z.-L. t2(0) is the spread of
the undisturbed time-domain waveform which here is

f 12|m(r)|2dt

£2(0) = (2-71)

-]

SIn(1)]%dx

which for the case of a triangular pulse

m(t) = 1 - |T’/TC s |1l iTc (2~72)
becomes

Té
2 = -
t*(0) TG (2-73)

This result is a slight overestimate of the actual undisturbed waveform
spread because it assumes (in effect) an infinite bandwidth. However, the
approximation should be reasonahly accurate since most of the power is
contained within the first null-to-first null bandwidth used here.
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The quantities Ay and A, are defined by Equations 4-44 and 4-45
in Section 4.1.3. A, is the coefficient of the next term in the expansion
of the phase structure-function and is defined similarly to A, and A,. For
the case of a K=3 Bessel function phase PSD with outer scale L, and
inner scale 2j,

Ap/Ag = an(g4/L )/2L2 (2-74)

Ay/hg = 1/(823L2) (2-75)

Note that the result for <t> derived using the moment method of Yeh and
Liu is identical to the thick layer result derived in Section 4.4.1 and
presented in Equations 4-122 and 4-125. The second and third term of the
result for of is, in the thin layer approximation (L=0), identical to the
results of Equation 4-135 for a thin phase-screen. The A, term is, of
course, not included in the theoretical results of Section 4 where only a
two term expansion of the phase structure-function is used.

Figures 2-39 and 2-40 provide & comparison of the MPS results
with the theoretical results obtained following the moment method calcula-
tion of Yeh and Liu. The results shown here encompass all MPS calculations
to date and involve five values of outer scale, three values of inner
scale, a range of carrier frequencies from 100 MHz to 7.5 GHz and several
different geometries. In all cases a K-3 phase power spectrum is assumed.
Table 2 summarizes the important calculation parameters used and gives the
values plotted.

Fairly good agreement is noted in all cases with a tendency for
the analytic results to be somewhat larger than the MPS calculations. The
100 MHz carrier frequency calculation, listed first in Table 2, is omitted
from the figure because it would have required a much larger scale for the
gain of one additional point. The lack of agreement at the higher values
of <t> and ¢, may be caused by the impact of the narrow bandwidth approxi-
mation used in the theoretical calculation which becomes less appropriate
with increasing scintillation severity or fncreasing bandwidth,
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] Table 2-2.

Comparison of analytic and numerical MPS results for
mean time delay and time delay jitter.

X t T o L L L z ~L </T o /T
o c ¢ o ! r c T ¢

‘ MPS  THEORY | MPS THEORY
0.1 GHz 97.5 nsec 33.0 0.39 km 10 m 10 km 100 km | 8.0 9.5 9.6 14,2

: 0.15 97.6 22,0 0.39 10 10 100 2,0 1.9 2.4 3.1
0.20 97.6 16,5 0.39 10 10 100 0.6 0.7 11 To1

- 1.38 97.6 100 3 10 14000 1000 0.85 1.1 Te1 Tt
1.38 97.6 100 5 10 1000 1000 0.06 0,08 0.34 0,37
1.38 97.6 300 5 10 1000 1000 0.65 0.7 0.87 1.1
1.38 97.6 500 5 10 1000 1000 te3 1.8 2.0 2,6
2.25 488.3 350 1 10 1000 1000 1ol 1.3 1.4 1.8
7.5 25,0 30 1 10 14000 1000 0,04 0.09 0.32 0.36

3 7.5 25.0 100 1 10 14000 1000 1.0 1.0 .1 1.3
1.5 25,0 100 3 10 14000 1000 0,03 0.14 0.37 0,39
7.5 25.0 150 3 10 14000 1000 0.29 0.31 0.48 0.54
7.5 25.0 300 3 10 14000 1000 T.1 1.3 Te1 1.6

3 1.5 25.0 300 3 30 14000 1000 0.97 1.0 13 1.3
1.5 25.0 300 3 100 14000 1000 0.84 0.76 0.87 0,97

2
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SECTION 3
STATISTICAL SIGNAL GENERATION

3.1 STATISTICAL SIGNAL REALIZATIONS

In this section a second technique is described to generate
realizations of wide bandwidth signals after propagation through the iono-
sphere. This technique is referred to as statistical signal generation
and relies on the properties of the solution to the parabolic wave equat-
ion under strong scattering conditions. This reliance renders statistical
signal generation less general than the MPS propagation algorithm discus-
sed in Section 2.

The basic formalism to generate statistical signal realizations
was developed by Wittwer (1979 and 1980) for the case of isotropic irregu-
larities. This section utilizes much of the initial formalism developed
at that time.

This statistical signal generation technique is based on the
solution for the two-position, two-freguency mutual coherence function
r(ax,aw) for spherical waves described in Section 4. In that section the
solution for T in the strong scattering limit is discussed in detail and
its Fourier transform is presented. This Fourier transform, S(K,t), is
known as the generalized power spectrum (Witiwer, 1979) and its knowledge
is a requirement for statistical signal generation. The formulation from
Section 4 for S(K,t)} in the thin phase-screen limit i5 used in this sec-
tion as the basis of stutistical signal generation. The thin phase-screen
approximation is necessary to provide tractable expressions of S(K,t) for
numerical evaluation. As shown in detail in the next section, the thin
phase-screen approximation is highly accurate in all cases 3s an approxi-
mation to the geometry of a satellite communication link.

Hence, the major limitation on the accuracy of statistical sig-
nal generation is the strong scattering assumption which provides the
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basis for the simplified solution for the two-frequency mutual coherence
function. In the case of weak scattering, the MPS methods of Section 2
may easily be applied. For strong scattering cases, often of interest in
the study of the effects of nuclear detonations on communications links,
the statistical signal generation technique is more efficient.

Although statistical signal realizations are useful only for the
case of strong scattering, their generation requires only a fraction of
the computer resources required for signal generation by wide bandwidth
MPS calculations.

Statistical signal generation is applicable to the case of elon-
gated irregularities as handled by the MPS simulation or to the more
general case of isotropic irregularities. Here the formulation is de-
veloped for both cases. Two detailed examples are presented for the case
of elongated irregularities and are compared to exact MPS calculations
that are described in Section 2.

3.2 FORMULATION

The scalar Helmholtz wave equation may be written as

(v2+kger(F)) E(Fyw) = 0 (3-1)

where k, is the free-space wavenumber, e. is the relative permittivity and
E(F,w) is the electric field at the angular frequency w. The exp(iwt)
time dependence has been suppressed. If the permittivity, e.(¥), is a ran-
dom quantity with an average value plus a small, zero-mean random part,
then

e (F) = <e(F)> (1+ 8e(T) ) (3-2)
<e(F)>

Now if the dielectric permittivity fluctuations are caused by electron
density fluctuations, then

2_
<Ne(?)> . wp(r)
c w

(3-3)
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AN (F) N (F) o2
=. _°© =._& P -
8e(7) n <N > w2 (3 4)
C e

where <N,> is the mean electron density, n. is the critical electron
density and wp is the plasma frequency. These three quantities are
related by

wé = Anc2r <N (3-5)
1
n. = (3-6)
¢ 2
)\Y'e

where ro is the classical electron radius (2.82x10-!%m) and c is the
speed of light in free-space. Combining Equations 3-1 to 3-4, the scalar
Helmholtz equation for a medium subject to electron density fluctuations
combined with mean jonization is obtained

2
ANeE)R
<N > 2
v + k21 - &% JE=0 (3-7)
1- wé/w2

k=2<¢erl/22 Cﬂ (1 - w:/wz)”z (3-8)

where w is the radian frequency of the transmitted waveform. The mean
wavenumber k is a function of propagation distance z, but this dependence
is omitted for convenience of notation in the following.

Figure 3-1 shows the geometry of the problem where a spherical
wave originates from a transmitter located at -z¢ and propagates in
free-space in the positive z direction, until it is incident on a layer of
ionization irregularities of thickness L. After emerging from the layer
of irregularities at z = L, the wave then propagates in free-space to a




T

receiver located in the plane z = z.. This geometry is chosen to model
transionospheric satellite communications links through ionization pro-
duced by natural causes, barium releases, or high altitude nuclear

detonations.
zZ=-2 + Transmitter
t -~
\/
z2=0
Ionized Random S1ab

z2=1L

2=z,

X — Receiver Plane

Figure 3-1. Geometry of transionospheric satellite communicati_.s

link through a thick scattering layer.

Now make the substitution

Z
.
E(F,u) = U(B,2,0) expl-i [ k(z')
=1
t

into Equation 3-7 to obtain

2
Me %
2 <N> 2
v2u+ Y g Vg2 & °®
L 922 3z 1 - w2/ w?
where
V2 = Ei_ + EE_
ax2  ay?

is the transverse Laptacian.

dz'

(3-10)
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The complex amplitude U can vary markedly over distances no
smaller than the scale size of the electron density fluctuations %5 that
is, the worst case variation of U in the direction of propagation can be
characterized by U~ exp(-z2/22._ ) where %ax > %+ Thus the second deri-
vative 3%U/3z2 is of the order of U/zzma . On the other hand, the third {
term of Equation 3-10 is of the order of U/A% __. Therefore, for x<<2max,
or >\<<2S the second term of Equation 3-10 may be ignored with respect to
the third term and the parabolic wave equation is obtained as:

2

ANe 3’_

<N > 2
vu-2ik 2 ¥ oo (3-11) !
+ 3z 1 - wS/wz %

The solution to the parabolic wave equation at the receiver
plane is U(p,zp,w). As discussed in Section 2, if the ionization irregu-
larities are infinitely elongated in the y-direction, there is no y varia-
tion. Then the multiple phase-screen propagation technique can be used to
obtain Monte Carlo "realizations" of U(x,zp,w), the solution to the
parabolic wave equation.

3.2.1 Wide Bandwidth Signals

Now, if instead of a monochromatic wave, the transmitted signal
is composed of a spectrum of Fourier components, S(w), then the time-
domain signal at the receiver plane is

—_ 21 7 — 16(u)) jut
V(p,Zr,t) = > -£S(w) U(p,Zr,w) e e duw (3-12)
where
2,
o(w) = - z]' k(z') dz'
Tt
ZY’ 1/2
= -8 (1 - w¥(2')/w?) dz' (3-13)
¢ .7 p
01
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4 The propagation of wide bandwidth, modulated waveforms is of
interest in this work. Thus let the real transmitted waveform be
expressed as

s(t)

Re{m(t)eiwot}

-jw t
%m(t)e o, %m*(t)e 0 (3-14)

WEPPECIRD

where wy is the carrier angular frequency and m(t) is the modulation
waveform. For a pseudo-noise (PN) code, m(t) consists of a long sequence
of pseudo-random polarity changes (binary PSK-modulated signal). The
frequency-domain representation of the transmitted waveform is given by

-

S(w) = J' s(t)e'iwtdt

P i(w -t 1 / -i(w *uw)t
{ - 5 { m(t)e dt + > ‘£ m*{t)e dt
] 1 1
i = E‘ M(d”wo), + 'é‘ (L)O) (3-15)

wheie M(w) is the Fourier transform .. the modulation waveform:

s o)

f m(t)e” 19t ¢ (3-16)

3 Combining Equations 3-12 and 3-15, the received waveform v can be
expressed as

V(B,Zr t) = .1_."_ .!: w-w p,Zr_,w) ew(“’)dm
1 . f— 16(w)
1 . jo: M (-w-w0) U(B,2,,0) e du (3-17)
9’)
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Z‘.
0(w) = -4 f (- mz/wz)llz dz' (3-18)
< 3 P

AMthough the notation is changed, it is understood that the plasma
frequency wp depends on z',

3 Now in the first temm of Equation 3-17 expand o(w) in a Taylor
series about wy:

" 2
(w mo) 0 ((uo)

0,(w) = O(wO) + (m-wo)()'(wo) + o

+ .., (3-19)

where the subscripted plus sign signifies the expansion about a positive

carrier frequency and the primes denote differentiation with respect to
w. From Equation 3-18

[} 7
. ’
o) = =2 7 (1~ )2 a2 (3-20)
-?t
4
U 27 2y M 2
()'(u\o) = - < -_7] (- (op/mo) dz' (3-21)
"t
) = L ST 2y 2 g (3-22)
(no 3 “‘p (uo (\b
C® =2
0 t
OHI( ),: 3 fr 1 2/ 2y-6/2 2d '
w, iy (- W ub) Wy P4 (3-23)
Cw -7
0 t
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In the second term of Equation 3-17, expand 6(w) in a Taylor series about

~up?
(tag)? o (-ug)
o.(u) = 8(-ug) + wrug) () + —2 0 4
. (~w-wy) 2 6"{u,)
= - O(wo) - (-w-wd)e (wo) -— 57 (3-24)

For notational simplicity, let e(m) = 8,5 8' (w) oy and so forth. Re-
taining the first four terms in the Taylor semes. the recewed waveform
can be written as:

V(B',Zr.t) ‘—'l-; ‘f M(w-mo) U(T)',zr,m) exp{ieoﬂ'e'(w-wo)ﬁmt}dw

L]

J W (eumwg) U(Biz,0) expl-i6,-18(-u-uy)-1ut Jdo

v
dn 2o
(3-25)

where
o(v) = voy + 29" + 1 vig (3-26)
=V 0 Y 0 6 o

In the first integral let v = w~w, and in the second integral use the sub-
stitution v = wmuy. Then Equation 3-25 for the received waveform becomes

h f M(v) UGz, vt ) exp{iB(v)*iv(t-t,) Jdv

V(p,Zr:t) =

_.( t+ ) ® —_
+ iluf W (v) U(5s2,-v-u,) exp{-i6(v)-iv(t-t ) }dv

(3-27)
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where 6, can be seen to be the total mean phase-shift (caused by dispers
sion alone) at the carrier frequency and ty is the mean group time delay
(i.e., the group delay at the carrier frequency):

Z

r ,
- .?9 if - wzlw 1'zdz' (3-28)
A
t
1 1 zr 27, 2 -1/2 | 3
ty=-6) " : %f (1- ub/ab) dz (3~29)
it

3.2.2 Total Fhase Shift, Time Delay, and Coppler Frequency

For cases where the entire region between transmitter and
receiver is uniformly ionized, these two equations may be written as

_ wR 1/2
8, = - 'ff‘ - “;/mz) (3-30)
= RIV, (3-31)

where R is the total propagation distance and vg is the group velocity
Vg=¢ (1

For cases of interest where 2 » 2 (otherwise the wave cannot
propagate without attenuation), and utilizing the relationship

w2/u)'? (3-32)

g 4nC2T <N >

the total phase shift and time delay can be written as

a5
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0. = = om (radians) (3-33).
o c W,
2zcr N
ty - Ry eT (seconds) (3-34)
c wg
where
R = z, + z,
2

R is the total propagation distance and NT is known as the total
electron content.

The well known Doppler shift due to range and ionization varia-
tions is

f .1 %
dop 24 dt
f . cr N
- OR+_e T (3-35)
c wo

The first terms of Equations 3-33 and 3-34 are simply the free-space
phase-shift and time delay which are proportional to the total propagation
distance R. Variations in this distance with respect to time produce the
well known Doppler shift and effects of time delay. The second term of
Equations 3-33 to 3-35 represents contributions to propagation phase, time
delay and Doppler shift caused by mean ionization. Note that increasing
total electron content (positive Np) causes positive Doppler shift and
increasing time delay. This is opposite to the effect of range variation,
where increasing time delay is associated with negative Doppler shift.
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It is evident from the parabolic wave equation, 3-10, and from
the definition of %k, Equation 3-8, that

U(E’Zr 90)) = U*(—ﬂ;’zr,'w)

With this fact in mind, it is seen that the two terms of Equation 3-27 are
complex conjugates of one another so that the received signal is real, as
it should be. This waveform can be written in terms of a complex
modulation envelope,

(w.t+e ) -i(w.t+o )
V(5:2,.t) =%e(3,zr,t-td)e o0 +-;-e*(‘p,zr,t-td)e oo

1(w0t+60)

= Re {e(7,z.,t-t,)e (3-36)

where the received complex envelope is

-]

e(mzm) = = M) UGB zpvtale@{iBu+iviidy  (3-37)

T am

Note that Equation 3-36 has the same general form as Equation 3-14 - a
wave modulated on a carrier at angular frequency w, with an additional
phase-shift and time delay as given by Equations 3-28 and 3-29.

In Equation 3-27 the received complex envelope e{p,zp,t) is
given as the integral over frequency of the Fourier transform of the
transmitted complex envelope multiplied by the solution to the parabolic
wave equation U, Since the value of the resultant received signal v is a
function of the carrier frequency wg, the wy dependence must appear
explicitly in Equation 3-37. Although the w, dependence is not explic-
itly shown in writing e(v,zp,t), the received complex env:'ope does
indeed depend upon the carrier frequency as shown explicitly in Equation
3-37.

et



3.2.3 Impulse Response Function

Now let us assume that the complex received electric field
e(B,zr,r) represents the response of a linear system to some input signal
m(t). Then in general one can write

e(Fr2,07) = [m(t') h(Fyz, 5t )it (3-38)

which simply states that the output signal is the convolution of the input

signal with the impulse response, m(t)*h{ ). Now with the following
substitution obtained directly firom Equation 3-16

Mv) = f m(tr)e T g
Equation 3-37 can be written as
[ o0 [ o ")
elFizpot) = 3= [nlt) _£U(-5.zr,w°)e“("’e“’(‘ tawt  (3-39)

Now comparison of Equations 3-38 and 3-39 yields the important
result for the impulse response function

- 21 T = iB(v) ivt
h(Bzpt) = o :£U(p,zr,vmo)e e v (3-40)

Equation 3-40 gives a direct result for the impulse response of an ionized
medium in terms of the frequency domain solution to the parabolic wave
equation, It is apparent from Equation 3-40 that the impulse response h
does depend upon the carrier frequency w, although this dependence is

not explicitly shown in writing h,

Notice that Equation 3-40 represents a Fourier transform rela-
tionship for the inipulse response function. The transform of the impulse
response function is composed of the product of two terms. One term,
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U(B}zr;v+w ), is the solution to the parabolic wave 2quation and repre-
sents random effects due to fluctuating plasma. The second term

ei—G_( v)

is the transfer function of a smooth ionized medium and can cause pulse
dispersion. Since the two transfer functions appear in a product rélation-
ship, it is convenient to separate the generation of signal structures in-
to a two step process. The first step consists of generating realizations
of the impulse response function with only fluctuating plasma effects.

The second step adds the effect of the gross jonization.

With the above thought in mind, let us consider a method to gen-
erate a realization of the impulse response function for the case where
‘8(v) = 0. In addition, consider for the moment the generation of the im-
pulse response function for the case where there is no y-variation. This
situation corresponds to the case of elongated irregularities considered
in Section 4 and to the two-dimensional MPS propagation simulation dis-
cussed in Section 2. Now the impulse response function satisfies the
equation

h(x,z,.,7) = -;; f U(X,Zr,wwo)eiwdv (3-41)

-

The following initial development is limited to this two-dimensional case;
however we shall return to the general three-dimensicnal case later.

3.2.3.1 Distinction Between Time (t) and Time Delay (r)

Recall that the x or 7 dimension corresponds to a displacement
on the receiver plane as shown in Figure 3-1. !n an actual physical situa-
tion, the x-variation is converted into variation with time by effective
motion of the propagation path through the irregularities. Thus,

t = v_li. (sec) (3-42)
eff
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where the effective velocity is a function of many system and environ-
mental parameters including wind velocities, platform velocity, plasma
velocity and propagation path geometry. This effective motion may be
caused by motion of the irregularities, by moticn of the line-of-sight
through the irregularities or by a combination of both. Note that the
time (t) variation of the fluctuations is assumed to be very slow relative
to the time (t) variation of the modulated waveform. In other words, the
bandwidth of the fluctuations is small compared to the bandwidth of the
modulation. This consideration is important since the solution to the
parabolic wave equation is obtained simultaneously at a number of frequen-
cies over the signal bandwidth. For the solution to be accurate, the
medium cannot vary over the time duration of the modulation waveform,

3.2.4 Statistics of a Realization

At this point it is useful to consider the technique discussed
in Section 2.2.4 to generate phase-screen rexlizations as it might be
applied to generate realizations of the complex electric field.

First a pseudo-random realization of the Fourier transform of
the electric field is chosen as

E(maK) = r_(S(mak)L/2n) }/2 (3-43)

where E is a realization of the Fourier transform of the electric field, S
is the desired power spectral density (PSD), L is the length of the grid
and ry is a complex Gaussian random variable such that

k> =8 (3-44)

The electric field itself is then obtained by taking the discrete Fourier
transform of Equation 3-43

N'l ~ :
E(eax) = | E(mak)eiZn/Ny
m=0

sy &=0,...N-1 (3-45)
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The most important properties of the electric field are immedi-
ately evident from the preceding brief discussion, First, since the
electric field is a linear combination of a number of Gaussian variates,
both its real and imaginary parts possess Gaussian probability distribu-
tions. Thus the realization of received signal amplitude is the square
root of the sum of the squares of the inphase and quadrature.phase parts,
and

{(Real E)2 + (Imaginary E)2}1/2
possesses a Rayleigh probability distribution,

In the following, a formulation is developed to generate real-
izations of the received electric field which are restricted to possess
Rayleigh amplitude distributions, Fortunately this 1imitation is not at
all restrictive for the case of a nuclear disturbance since large spatial
regions can experience Rayleigh fading statistics.

Finally it is evident from Equations 3-43 and 3-44 that the
electric field power spectrum has the form

<E(mak) E*(naK)> - & S(maK) (3-46)

which is a requirement if the electric field is to be stationary
(Tatarskii, 1971). Thus the resulting autocorrelation function generated
by the method described in Section 2.2.4 is dependent only on the distance
between measurement points.

3.3 IMPULSE RESPONSE FUNCTION GENERATION

In this section techniques are developed to generate realiza-
tions of the impulse response function h(x,z.,t) defined in Section
3.2.3. Once this function is available, Equation 3-38 or its equivalent
may be applied to obtain a realization of the complex received electric
field. It is shown here that it is possible to generate the Fourier
transform of the impulse response function U(x,zr,v) in essentially the
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same manner as rea1izations of the phase are génerated.‘ Note that the
independent variable pairs v-t and x-K are used to unambiguously denote
Fourier transform pairs.

3.3.1 Realizations of the Parabolic Wave Equation Solution
In this section a realization of the impulse response function

is obtained by first generating a rea]ization of its Fourier transform
U(x,v). Thus given the Fourier transform pair,

| )

U(x,v) = f hix,1)e” VTde (3-47)
h(x,1) = _;.; :ZU(x.v)e“"dv (3-48)

first generate a realization of U(x,v) as illustrated in the following.

Then take the transform to obtain a realization of the impulse response

function h(x,7). Note that Equation 3-48 is Equation 3-41 with the z,

and w, dependence removed for convenience. Both of these dependencies

play an important role in the results but are unnecessary complications to
. the formulation.

? Now U(x,v) can be written as the Fourier transform
‘ U(x,v) = [ Sk, )e™®*e1VTekd (3-49)
=-gd =0

o B e e o T R S 8 Tt

yzesa

where h(K,t) is recognized as the Fourier transform of the impulse

response function with respect to x. h(K,1) is not the impulse response

function which is denoted as h(x,t). In the discrete case Equation 3-49
. may be written

e

1 S S S W e PSRN SS

N-1 M-l
U(zax,pav) = § .7 h(mK,sat) ol MAKAX -ipsavar
m=0 s=0
220,...N-1; p=0,...M-1 (3-50) %
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where N discrete points are used to represent a total distance of L so
that the point spacing ax = L/N. By the Nyquist sampling. theorem; the
minimum spatial frequency is aQ = 1/L. The minimum spatial radian
frequency is then 2x/L. Similarly T is the total time duration of the M
samples used to represent the delay space functional dependence. Thus the
delay increment is At = T/M. By the Nyquist sampling theorem the minimum
frequency is af = 1/T, or the minimum radian frequency is 2x/T. The
total, two-sided spatial bandwidth is Bg = 1/ax, and the total,

two-sided delay bandwidth is By = 1/at. For later convenience also
define the total radian bandwidth as B, = 2+B4. With the

substitutions just discussed Equation 3-50 becomes

' N-1 M-1
U(2ax,pav) = § 7 h(maK,sar) I2mm/N -2ups/M

2’09...""'1; p=0’oooM"1 (3"51)

Now choose as a realization of the Fourier transform the quantity

1/2

LB
h(maK,sat) = Y S(mK,sat) P (3-52)
(2n)2

where S(K,t) is the generalized power spectrum given by either Equation
4-97 or 4-99 in Section 4. ry. is a complex random variable such that

1

where the g's are independent, Gaussian random variables with zero mean

and unity variance. With this definition for the random quantity rp¢ it
is easy to show that

*
Tos"or” = Smndsr (3-54)

and
rpg> = 0 (3-55)
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Now it must be shown that the choice for the Fourier transform,
Equation 3-52, is correct. Let us calculate the autocorrelation function
of U(x,v) and show that it is indeed the two-frequency mutual coherence
function. The continuous autocorrelation function of U(x,v) is given as

BU(x,v) = U(x'+x, v +V)UR (X', v')>
1 L Bv/Z
= U(X'+xX,v' +V)U*(x',v* )dx'dV' (3-56)
L8, {-3\42

where ergodicity is assumed and ensemble averages are replaced by averages
over distance and frequency. Now the preceding equation may be written
discretely as

Bu(xs\’) Bu(QAX’pAV)

1 N'l M'l
—_ Y U(kax+zax,qavipav) Ux(kax,qav) axav
L8, k=0 =0

2=0’CION-1; p=0,oooM"1 (3'57)

From Equation 3-51 the Fourier transform of U may be substituted into
Equation 3-57 to obtain

1 N-1 M-1 N-1 M-1 N-1 M-1

Bylaaxspav) = — 7 7§ 1 I I
LB, k=0 g=0 m=0 s=0 n=0 r=0

x h(maK,sat) exp{i2n(k+2)m/N - i2x(q+p)s/M}
x h*(naK,rat) exp{-i2akn/N + i2xqr/M} axav(&Kar)?

2=0,...N-1; p=0,...M-1 (3-58)
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Now substitute the realization of the Fourier transform given by Equation
3-52 into Equation 3-58 to obtain

- B LAX4PAV) =
v (21)2 k=0 q=0 m=0 s=0 n=0 r=0

x {S(maK,sav)S*(naKorac) JH/ 2 v

x exp{i2n(k+L)m/N - i2n(q+p)s/M}

x exp{~i2=kn/N + i2nqr/M} ax av( &K at) 2 (3-59)
Now since

N-1 .
z e'|2ﬂ'km/N e-iZ'ﬂkn/N = N&§ (3"60)

k=0 il
and

M-l ;
) e-12nqs/M e+12nqr/M - Mssr (3-61)
q=0

Equation 3-59 may easily be reduced to

N-1 M-1
NMax Av z ): S(mAK,SAT)
(2n)2 m=0 s=0

BU(zAx,pAv)

x |tng|? exp{i2mam/N - i2nps/M} (&Kar)?

N-1 M-l

20 20 S(maK,sat) |rms|2 exp{i2nam/N - i2mps/M} Kat
m=0 s=

(3-62)

It is apparent that a Fourier transform relationship exists between the
correlation function By and the function S(maK,sat)|rps|2. Thus the

power spectrum of the single generated realization U(gax,pav) is

S(maK,sat) |rms|2
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where S(K,t) is the desired generalized power spectrum discussed in
Section 4 of this report.

R AT L g AR

It is apparent that each of the Fourier components of the power
spectrum is independent of Fourier components at other values of K and «
because of the choice of the random number rp.. Because of this delta
! correlation property of the power spectrum, the autocorrelation- function
| By is only a function of ax and av as it should be in accordance with
» the description of the two-position, two-frequency mutual coherence func-
; tion, r, given in Section 4. Since the random numbers rp. are Gaussian
’ variates, |rps)? is a chi-squared variate with two degrees of freedom.

Since <|rps1“> = 1 the mean value of the power spectrum is the desired
value. In other words, each realization of U(sax,pav) is dependent upon a ;
: sequence of random numbers, ryc, and thus has a spectrum which is not :
f identically equal to the desired spectrum. However, the average PSD of a
’ large number of such realizations is given as !

Ao R g E B 2

Ll san

Avg { S(mAK,SA'r)'r‘mslz} = S(m&XK,saT) (3-63) 3

which is exactly the result desired.

The average autocorrelation function determined by averaging :
over a number of numerically generated realizations is obtained by taking ;
s the average of Equation 3-62 i

Nl M-1

| Avg (B (aax,pav)} = T 1 S(mMK,sat) exp{iznmn/N-i2mps/M}aKac :
m=0 s=0 3
(3-64) .
This equation may be rewritten in its continuous form as ;
: AvglBy ()} = £ [ 5(K,t) e & TV dkd = p(x,v) (3-65)

- =

which is identical to Equations 4-84 or 4-87 and proves that the formula
given in Equation 3-52 for the Fourier transform of a single realization
is indeed correct as claimed.
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At this point it has been proven that Equations 3-51 and 3-52
may be used to generate a realization of the solution U(x,v) to the para-
bolic wave equation. This realization has r(x,v) as its autocorrelation
function and S(K,t), the generalized power spectrum, as the Fourier trans-
form of r. In order to facilitate numerical generation of realizations,
the formulation for S(K,t) has been specialized with little loss of gener-
ality to the case of scattering by a thin phase~-screen.

The equations for S(K,t) are given in Section 4 for two cases.
Equation 4-97 is valid for the case of irregularities that are infinitely
elongated perpendicular to the direction of propagation., Equation 4-99 is
valid for isotropic irregularities. Appendix A is devoted to numerical
evaluation of the two equations and shows a number of plots of S(K,t) for
an interesting selection of parameters.

The specialization to the thin phase-screen case mentioned above
is discussed in detail in Section 4 where results are presented for both
thick and thin layers to show the effect of layer thickness on the S,
scintillation index, the mean time delay and the time delay jitter. In
general, for satellite communication links through ionospheric disturb-
ances, the thin phase-screen approximation is quite accurate and enjoys
a distinct advantage in usefulness over the thick layer solution.

3.3.2 Realizations of the Impulse Response Function

At this point a method has been described to generate discrete
realizations of U(x,v), the solution to the parabolic wave equation,
directly from the computed two-frequency mutual coherence function. In
order to generate realizations of the impulse response function h(x,t) it

is necessary to apply the Fourier transform relationships given by
Equations 3-47 and 3-48. In the discrete case, Equation 3-48 becomes

M-1 .
h(asx,sat) = 1 T U(ax,pav) e 27PS/My, (3-66)
21\' p-_-o

2=0,...N-1; s=0,...M-1
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Substitution of Equation 3-52 into Equation 3-66 yields

N-1 M-1 M-1 . <o
h(eax,sat) =2 ] § T h(mK,rar) el 2N giZap(s-r)/M g,
21 =0 r=0 p=0
(3-67)
220,...N-1; s=0,...M-1
but since
M-1 .
oi2mp(s-r)/M _ Ms, © (3-68)
p=0 ‘
Equation 3-67 reduces to
wo Nl i2nam/N
h(2ax,sa1) = — § h(m&K,s47) e AKATAV
2'" m=0
2=0’000N'1; S=0,oooM"1 (3"69)

Now use Equation 3-52 to specify a random realization of the Fourier
transform and simplify by using the relationships for AK, ar, and av to
obtain

N-1 .
h(esx,sat) = (B /L)Y/2 20 [S(maK,s at) ]}/2 rmse‘z"“’"/N (3-70)
m=

2=0,...N-1; s=0,...M-1

This equation is the final statement of the method to generate
realizations of the impulse response function after transionospheric prop-
agation. Note the interesting property observed here that the values of
the impulse response function are uncorrelated (or delta-correlated) in
delay. This property occurs because the random variable rpg obeys the
correlation relationship specified by Equation 3-54.

Again it is quite important to note that the impulse response
function generated in this manner is a complex Gaussian variate whose
amp1litude {h(X,t)h*(X,r)}l/2 follows a Rayleigh probability distribucion
function. The importance of this fact is illustrated in the following
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section where two examples. of statistically genérated signals are given
and compared to multiple pha§e-§creéﬂ calculations.

3.4 RAYLEIGH COMPONENT OF'Tﬁt.COHROSITE SIGNAL

This section describes the steps which must be taken to generate
statistical realizations of the impulse response function. Several exam-
ples are discussed. and results compared. to WS results presented in
Section 2 of this report.

One very important problem remains to be resolved before statis-
tical signal realizations can be generated. The prnblem is caused by the
fact, discussed in the previous section, that the chcice of Gaussian ran-
dom variables results in Rayleigh amplitude statistics for the generated
signal. The reason for the problem is cbvious - the analyticaliy calcu-
lated generalized power spectrum S(K,r) includes all scattering effects,
but the limitation imposed by requiring that the generated signal have
Rayleigh statistics effectively requires the user to generate only the
Rayleigh portion of the signal.

The solution to this problem is pragmatic. Arbitrarily divide
the received signal into two disjoint parts. One part, called the disper-
sive component, represents the effects of large phase structure on the
signal. The other signal component, called the Rayleigh signal component,
is that part of the received signal which obeys Rayleigh statistics and
represents severe diffractive or angular scattering effects. These two
signal components have some similarities to the focus and scattering
signal components upon which Fremouw's (Fremouw, et al., 1978) two-com-
ponent signal statistical model is based.

Now for the case of a phase power spectrum which represents a
range of scale sizes, the scattering processes are well understood. Large
scale sizes, such that the focal length of the irregularities is greater
than the propagation distance, cause large phase effects but cause little
amplitude scintillation. This is another way of saying that larger scale
sizes cause dispersion and not diffraction. Small scale sizes, whose
focal lengths are less than the propagation distance, contribute to the S,
scintillation index because these small sizes are responsible for diffrac-
tion or angular scattering effects.
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Now it is also well known (Fante, 1975) that for saturated scin-
4 tillation, the signal amplitude statistics are Rayleigh and the S, scin-
s tillation index is tnus unity. It is also known that weak scattering

e ‘ predictions of the scintillation index in either the Born approximation or
' the Rytov approximation give accurate results for S, < 0.5 (Crane, 1977).

F:
A
%
¥
h
R
bs
g

T O RS L% YA

> f Now assume for the moment that saturated, strong scattering

; : occurs for S, > 0.5. That is, with the heuristic assumption that for g
E S, > 0.5, the amplitude statistics are basically Rayleigh and the scintil- g
5 | Tation index is effectively unity, the S, scintillation index can be é
Eo accurately used to separate the Rayleigh signal component from the disper- %
% sive component. That is, since the scintillation index can be expressed %
i as the integral over wavenumber of the phase PSD times a Fresnel filter f
5 factor, the integral may be used to define a scale size which separates ;
4 dispersive effects from diffractive effects. ;
i In this section the discussion is limited to a K= one-dimen- /
g sional phase PSD. The integral expression for S, is used to define an ;
{ outer scale size for the Rayleigh signal component, Lp, which is in turn :
§ used to define a new phase PSD with phase standard deviation ¢,p. The !
) Rayleigh phase standard deviation, ¢,p, and the Rayleigh outer scale ;
ﬁ size, L, are then used to define the generalized power spectrum for 3
i purposes of statistical signai generation. The effect of this ad hoc :
3 ‘ procedure is to generate only that portion of the signal that obeys §
z ‘ Rayleigh statistics. The rest of this subsection describes the details :
3 involved in obtaining the effective PSD for the Rayleigh component of the §
3 received signal. i
v In the thin phase-screen approximation (Salpeter, 1967) the S, ;
f scintillation index is given as an integral over wavenumber by 3
g/ ;
: 2 1 2 (K 2% i
: S, = 4_{s¢(|<x) sinZ (K2z%/2k) dK (3-71) :
- (elongated irregularities)

g: |
e 2 © H
; = in2 2 - :
] S, 4!@' :£ s¢(t<x,|<y) sin [(lemy)z*/zk] dk dKy (3-72) |
4 (isotropic irregularities) ”
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1.1 ,1 -
et (3-73)

e s

The geometry is shown in Figure 3-1 where the layer thickness L
is taken as zero in the thin phase-screen 1imit. The transmitter emits a
spherical wave which propagates a distance z, in free-space until it
penetrates the scattering layer. The wave then propagates a distance z,
to the receiver. The phase power spectra are given as

S (K) = a: rf(n-2)/2]L,

T r(ne3)/2) (1wa2)(n-2)/2
(elongated irregularities)

(3-74)

@ 1((n-1)/2)L,

v 1(n-3)/2) [1+(k2e2)12)(n-1)/2
(isotropic irregularities)

(3-75)

S (Kx’K

$ )=

Yy

where T is the gamma function. It is seen that these two PSD follow the
relationship (Rufenach, 1975)

Sylky) = :1' So(KyoKy) &Ky (3-76)

so that in both cases the one-dimensional phase PSD has the desired power
law form K=N¥2,

3.4.1 Rayleigh Signal Component for Elongated Irregularities
Now in the case of elongated irregularities, the substitution

V = K22%/2k (3-77)

may be applied, and the integral expression Equation 3-71 may be written
as

m
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2_8 /2 & 1((n-2)/2] "- sin2(V2)dV (3.78)

S
= r[(n-3)/2)e¥2 ] (1+2v%/g)(n-2)/2
0

where

£ = z*/kLg = xz*/Zng (3-79)

Now define the value V' such that the scintillation index is 0.5

8 V2 o 1[(n-2)/2] Jr sin2(v2)dv (3-80)
(

(0.5)2 = —
/v [(n-3)/2] gY/2 1+2v2/ ) (n-2)/2

0

V' is the cutoff value chosen so that wavenumbers smaller than v2 kv'/z*
contribute a value of 0.5 to the scintillation index in the weak scatter
approximation. Since this weak scattering expression is valid for

S, £ 0.5 (Crane, 1977), V' is & well defined quantity. Now define the
outer scale cutoff value, Lg, such that scale sizes larger than or equal
to Lg contribute a value of 0.5 to the S, integration, or

g = (z%/2kV' Y/ 2 = (azx/anvt )V 2 (3-81)

Equation 3-81 can be rewritten as
La/ly = (AZ*/4sL2V* )Y/ 2 = (g/2v')Y/2 (3-82)

Hence Lg is the scale size which separates large scale sizes from the
small scale sizes that cause the major scintillation effects. Now it is
apparent that the value of LR/Lo is dependent upon the spectral index
of the one-dimensional phase fluctuations, 2-n, the outer scale, Ly, the
parameter ¢ and the phase standard deviation, Oy In the case of inter-

est here the one-dimensional phase PSD has a spectral index of -3, so n is

taken as 5.

Figure 3-2 shows lLp/L, as a function of 0y With £ treated

parametrically. Values of ¢ ranging from 10-6 to 1 are shown. For a con-
stant value of &, there is a minimun value of the phase standard deviation
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below which no solution is found for Values of o, below the minimum
value correspond to the situation where a?l 1rregu1ar1t?es are close to
the phase-screen and cause only dispersive effects. Recall that the focal
length for an irregularity of strength ¢, is

= o2 -
F 1rLo/M>o (3-83)
so that

Flz* = nLg/xz*% (3-84)

So as o4 or equivalently ¢, increases for a given xz*/Lo2 or g value,
the focal length becomes smaller than the effective propagation distance.
Thus as o4 increases, more and more irregularities contribute to angular

scattering and thus add contributions to the value of §,.

As ¢, continues to increase for a fixed £ = xz*IZnLoz, the
focal distance for more and more of the ionization irregularities becomes
smaller than the effective propagation distance z*. Eventually, for ¢
large enough, all the ionization scale sizes contribute to the §, calcula-
tion so that the received signal is said to have no dispersive signal com-
ponent. In that case all the original phase irregularities contribute to
the Rayleigh signal component and Lp = L,.

Now that a scale size Lp has been chosen to characterize those
sizes which contribute to the Rayleigh part of the scattered signal, let
us choose an entire phase PSD corresponding to the Rayleigh signal compon-
ent with outer scale size Lg. For this Rayleigh PSD to match the origi-
nal PSD at small scale sizes, as it should, the two PSD's must have
identical limits for K, large. In the limit for K, large

|
S(K)sx—i__.o__=c

2-n, 3-n
K L 3-85
o' X (KL)""2 X 0 ( )
X0

2
¢

which must be identical to the Rayleigh signal component PSD. Now for the
case of a K-3 one-dimensional phase PSD, n = 5 in tquation 3-74 and
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2 =2 = 42 |~2
°$Lo = °¢RLR (3-86)

Thus the choice

’;
o
3

%

4R °¢LR/L0 (3-87)

yields a new Rayleigh signal PSD with scale size dependence identical to

the original phase PSD scale size dependence at small scale sizes (large K
values).

With the aid of Equation 3-87 it is possible to place the value
of the phase standard deviation of the Rayleigh signal compcnent, oz, On
the curves shown in Figure 3-2. Figure 3-2 can also be cast into the form
of Figure 3-3 which shows the resulting Rayleigh phase standcrd deviation,
o4,rs as a function of the original phase standard deviation, o,. For a
f?xed value of the parameter ¢ there is a minimum value of ¢, below which
angular scattering is negligible and S, does not reach the value of 0.5.
For this case no Rayleigh signal component is observed. As o4 increases
with constant £ the value of

AR D RS e SR A SRR

AT LT W R

2w

12
F/z* = nLO/Az*o¢

decreases so that all scale sizes eventually contribute to the Rayleigh
signal component and there is no dispersive component. For that case the
Rayleigh spectrum is identical to the original spectrum with

o e A5 A B T A D3 T WG I G B 200

4 =0

o and LR = Lo. g

¢R
This case corresponds to the upper portion of the plot where 4R would %
be larger than o if any curves appeared there. )

Returning to Figure 3-2 it is seen that for a constant value of
g, there is a minimum value of o, below which S, does not reach 0.5.
These minimum values appear as vertical lines on the figure. In this case
of weak scattering there is no Rayleigh signal component. For intermediate
values of g, larger than the minimum, there is both a dispersive signal
component and a Rayleigh signal component; here Lp and 4R may be read
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from the figure. For still larger o, values on any constant & curve,
angular scattering effects dominate and the Rayleigh signal may be gener-
ated directly from the original values of L, and g with no dispersive
signal component.

As discussed in Section 4.3, an important signal parameter which
characterizes whether dispersive or diffractive effects dominate is
defined as

a = wo/o (3-88)

»%coh
For o greater than unity angular scattering or diffraction effects domi-
nate the signal structure. For « less than unity dispersive effects pre-
dominate. Therefore, it is necessary that the value of « for the Rayleigh
signal component be greater than unity or else the heuristic basis for the

choice of the Rayleigh PSD loses merit. For a K3 one-dimensional phase
PSD the value of o is given in Equation 4-106 as

an{L./2:)22%a ’
P M (3-89)
ZnLg

Now for the Rayleigh signal component

an{lp/20) AZ*
a = R’ %R G¢R (3-90)
2ﬂL§

Now Equation 3-87 may be used in Equation 3-90 to obtain

¢
AZ*Z'_Q_ % (3-91)
2nL0 c¢r

(!R = 9,n(LR/ 2R)

Since results already exist for g,5 as a function of g, with £ as a
parameter it is easy to compute op as a function of % with ¢ taken
parametrically.
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Figure 3-4 shows the value of &R for the Rayleigh signal compo-
nent, as a function of ¢, for the composite signal for values of the
parameter £ ranging from 10-% to 100. The ratio of outer scale to inner
scale Lp/sg is taken as 100 in the figure; this value is a reasonable
minimum. Values of the phase standard deviation for the Rayleigh signal
component, Ogpe Are also shown parametribg]]y ranging from 1 to 1000 radi-
ans., As can be seen in the figure, the minimun value of is 2.5 for
o,, greater than 1.0 radian. Since values of o4 less than 1.0 radian are
prohibited (see the discussion of Figure 3-3), the value of 2.5 is a true
minimum for ap

The fact that op for the Rayleigh signal component is always
greater than unity is important for two reasons. The first reason, already
discussed, is that the Rayleigh signal component is thus characterized by
angular scattering or diffractive effects. The second reason is that the
time delay jitter for the Rayleigh signal component is then independent of
a and is simply related to the coherence bandwidth, w.oy, defined in
Section 4.1.5.2.

From Equation 4-135 the time delay jitter for the composite
signal is given by

o = (l . l_)l/z 1 (3-92)

2 4 Yeoh

Now it will be shown that the time delay jitter is always inversely pro-
portional to the coherence bandwidth if the signal has a Rayleigh com-
ponent. Furthermore, if the signal has a Rayleigh component, the value of
the coherence bandwidth is the same as it is for the composite signal.

Now if o is large, diffraction is the dominant effect and the
time delay jitter becomes

¢ = (3-93)
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If o« is small, dispersive effects dominate and the Rayleigh ;
signal component must be generated to isolate the diffractive processes. g
If the Rayleigh signal component exists, then op 1S greater than unity !
and ’

o = — (3-94)

Y2 weonR

where the additional R subscripts are used to denote the Rayleigh signal
component,

Now for a K=3 one-dimensional phase PSD, the value of eoh IS
given by Equation 4-74

2nw L2
Yeoh = - 2 (3-95)
an( LO/ 2 ) Az %

where A, and A, are taken from Equations 4-44 and 4-45. Equation 3-95
is valid for the composite signal. Now since, from Equation 3-87

2).2 - 12/7,.2 -
LR/°¢R L0/°¢ (3-96)
the value of the coherence bandwidth for the Rayleigh signal component is

approximately identical to the value of the coherence bandwidth for the
composite signal,

WeohR ¥ Yeoh

since the only difference is the logarithmic term which will have little
effect.

At this point it is useful to consider the important signal
parameter g, defined in Equation 4-73 as the signal decorrelation dis-
tance. For a K*3 one-dimensional phase PSD the values of Ay and A, are
given by Equations 4-44 and 4-45 and the value of the signal decorrelation
distance is given by
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(3-97)

The value of the signal decorrelation distance for the Rayleigh signai
component may be written as

2 2
2 ZLR(zr+zt) )
zoR (3-98)
zn(LR/zi)o:Rzg

Equation 3-96 may be substituted into Equation 3-98 with the result that

SR * 4o (3-99)

Exact equality is not obtained because of the differences in the logarithm
term. This important result states that, if a Rayleigh signal component
exists, its signal decorrelation distance is approximately equal to the
signal decorrelation distance of the original composite signal.

3.4.2 Rayleigh Signal -omponent for Isotropic Irregularities

In the case of isotropic irregularities the transformations

K Kx + Ky (3-100)
and
= K27% -
V = KeZ*/2k (3-101)

may be introduced into Equation 3-72 and the identical definition of V'
established as was used in the case of elongated irregularities so that

(0.5)2 = (3-102)

A
8o§r[(n-1)/21/ sin2(V)dv
(

r[(n-3)/2]¢ 1+2V/§)(n'1)/2
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defines V'. The calculation of the Rayleigh signal component parameters
o4Rs LR and op may be accomplished with the same procedures used in
the elongated irregularity case.

Figures 3-5, 3-6, and 3-7 show the results for Lg/Lg, Gpp aNd op
as functions of the value of the phase standard deviation ¢; of the com-
posite signal and various values of the parameter AZ*/ZnLOZ. As can be
seen the general behavior of these results is similar to the results for
the case of elongated irregularities.

3.5 EXAMPLES OF STATISTICALLY GENERATED SIGNALS
3.5.1 Example 1: Diffraction Important

In this section examples of two statistically generated signals
are presented and the results compared to the MPS results presented in
Section 2. These two examples present interesting tests of the signal
generation algorithms since one case is dominated by diffractive effects
and the other is dominated by dispersive effects.

First consider the MPS calculation described in detail in
Section 2.6. In this example the carrier frequency is 2.25 GHz, the phase
standard deviation is 350 radians, the outer scale is 1 km and the inner

scale is 10 m. The incident wave is plane (infinite zt) and the scatter- .

ing layer is 1000 km thick with an additional free-space propagation
distance of 1000 km from the exit of the layer to the receiver plane.
This MPS calculation is applicable only to a two-dimensional geometry and
thus corresponds to the theoretical development for the infinitely elon-
gated irregularity case.

Now since the computed values of the generalized power spectrum
S(K,t) have been specialized to the thin phase-screen case for conveni-
ence, it is necessary to find the thin phase-screen geometry equivalent to
the MPS geometry just described. For the case at hand the single thin
phase-screen is centered in the scattering layer and is located a distance
of 1500 km from the receiver plane. The value of Az./21L,2 is then
0.031831. Now using the results shown in Figures 3-2 and 3-3 it is seen
that for the Rayleigh signal component
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°¢R = 194 rad

LR = 564 m

Now in order to obtain results for comparison to the MPS results
presented in Section 2.6, it is convenient to numerically generate the
solution to the parabolic wave equation U(X,Zr,v+ub) by taking the
Fourier transform of the impulse response function

U(x,zr,vh»o) =._£ h(x,zr,r)e'i“dr (3-103)

Equivalentiy U may be directly obtained from Equation 3-51. Equation 3-103
is identical to Equation 3-47 where the z, and W, dependence are included
for completeness. Note that the impulse response function h is also
dependent upon the carrier frequency. Realizations of the impulse response
are obtained in discrete form using Equation 3-70. The generalized power
spectrum S(K,t) is given for the case of elongated irregularities by

(3-104)

_ “R%ohR %R 1,2,2 1 2r1,2,2 ;
S(kyx) = LTRR exp - K20k - L o] 2 K2eReu ]’

23/2“

where the parameters ap, f,gs and weohR are given by Equations 4-106,
4-73, and 4-74, respectively and of course refer to the Rayleigh component
of the received signal which is the only component one can generate with
this technique. A, and A, which are required in Equations 4-73 and 4-74
may be obtained from Equations 4-44 and 4-45. The carrier frequency
dependence of the impulse response function is evident in the expressions

for the parameters «, ughs and 4.

The Fourier transform given by Equation 3-103 may be impliemented
discretely by using Equations 3-51 and 3-52 from the earlier development.
In order to directly compare to the MPS case, 32 discrete frequencies are
used over a bandwidth of 4.096 MHz. The same number (32) of delay cells

are used with delay spacing
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T =32 ot = 7,812 x 10°° sec

Values of the important Rayleigh signal parameters w.onp and o are given
in the plane wave, thin phase-screen case as

WeohR = 'ﬂwvo/)\Ap_ZrozR = 0.795 x 108 rad/sec

o = “o/°¢R“tohR = 91,7
To perform the integration over t which is required in Equation 3-51 or
Fauation 3-103, the variable ¢ ranged discretely from -2.44x10~7 to

7.32x10"% sec so that values of ohRT ranged from -0.19 to 5.82. As can
be seen from Figure 3-8 which shows the normalized power impulse response
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function defined in Section 4.3, the range of non-zero values of the power
impulse response is about

0_<_wcoh T£3

for « = 100. In the case at hand « is close to 100 and so the range of .
values taken in the numerical calculation includés all important t values.

Another way to check the accuracy of the numerical calculation
is to form the integral

N-1 M-1
y Y S(maK,sat) aKar
m=0 s=0

This integral is the discrete equivaient of

f fS(K,r)de'r

and should be equal to unity since the continuous integral is equal to
r( ax=0,4f=0) according to Equation 4-84 or 4-87. This important quantity
is always formed and checked in every statistical signal generation.

For this example there are 1024 cells in the x-direction, with a
total length of 208.33 m and a spacing of 0.20345 m which is precisely
three times the grid spacing used in the MPS calculation.

In order to obtain results for statistical averaging purposes,
the statistical signal generation algorithm is performed five times with
five different random number sequences. As described above, for each
individual signal generation calculation, 32 frequencies are generated
with 1024 x-points for each frequency. 1his signal is referred to as a
single statistical realization and is similar to a MPS frequency selective
signal realization.

Figures 3-9 to 3-14 show a comparison of the mutual coherence

function r{ax,af) for a single statistical realization versus the strong
scattering theory described in Section 4, Figure 3-9 shows the amplitude
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of r corresponding to values of ax of 0.0, 0.61m, 1.22 m, 1.83 m and 2.44
: m versus theory. These values of Ax are chosen to correspond to the MPS

4 values presented in Figures 2-26 to 2-31. The theoretical results pre-

: sented here are similar to those presented in Figures 2-26 to 2-31 except
that here the thin phase-screen theoretical limit is taken. It is seen
that the difference in the phase of r between the thick layer theory and
the thin phase-screen theory is simply a term that is linearly proportion-
al to the frequency deviation from the carrier frequency. In Section 4 :
the received time-domain signal is shown to be relatéd to the Fourier :
transform of T so that this phase term that is proportional to frequency E
yields only an additional time delay. As can be seen in Figure 3-9 the ¥
agreement between statistical results and theory is good but is somewhat
worse than the agreement between the MPS results and theory.

N S, e

Figures 3-10 to 3-14 compare the phase of I computed from the
single statistical realization versus the thin phase-screen theory.
Agreement is very good in the most important region close to zero Af where
the power in the spectrum of the modulation waveform is concentrated, but
elsewhere the phase of I diverges somewhat from the analytic results.

vt LT TEART AR

Figures 3-15 to 3-20 compare the value of r obtained by averag-
ing the results of five independent statistical realizations to the ana-
lytic, thin phase-screen results. It is apparent in Figure 3-15 that the
average amplitude of T compares quite well to the theory and, in fact,
does better than the MPS calculation at matching the theoretical thin
phase-screen results. The agreement with theory is quite good for the :
entire range of Af for all five of the Ax values shown. *

P e et

Figures 3-16 to 3-20 show a comparison of the phase of r for the
average of five statistical realizations versus the analytic thin phase-
screen value. As expected from the averaging process, the variations in
the phase are reduced in comparison to the variations observed for the
case of a single realization. In all five figures the average statistical
phase and the analytic phase agree quite well near zero Af but disagree
somewhat for |af| greater than about 1 MHz. This minor disagreement .1 the
phase of T does not appear to be important to the resulting time-domain
signals to be presented next. The most important aspect of these compari-
sons is the good agreement between numerical results and theory near zero
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af.  This region is the most critical since zero af corresponds to the

carrier frequency where most of the energy in the modulation waveform is
concentrated.

Figure 3-21 shows an example of the envelope of the received
triangular waveform as determined by the statistical signal generation
technique. The received complex envelope is given by

L [ MOU(x,2, vhug)e VTl (3-105)

e(x,zr,r) = i)

where M(v) is the Fourier transform of the transmitted pulse

sinnfT_\2
1
T ._____E. i
¢ ( nfTe ) lf‘-s Te

M(f) = (3-106)

1
0 L
[f] > T

where v=2xf and T, is 488.3 nsec, twice the duration of the transmitted
triangular pulse. U(X,2z.,vtwy) is determined from the discrete form

of Equation 3-103 where the impulse response function h(x,zr,r) is the
statistically generated impulse response function obtained using
Equation 3-70. In Figure 3-21 samples of the amplitude le(x,zr.r)l are
shown for 101 values of x separated in distance by 0.61 m, the MPS grid
interval, Thus Figure 3-21 is directly comparable to Figure 2-32 in
Section 2. The time domain results shown in these two figures are both
independent realizations of a stochastic process and hence cannot be
identical. However, the similarity in overall structure indicates that

the z*atistically generated realization is an adequate approximation to
the exact MPS calculation.

Figure 3-22 shows the average pulse shape of the received time
domain signal which is obtained by averaging all the 5120 realizations of
Ie(x,zr.r)l generated in five runs with 1024 x-samples per run. This
average pulse shape is found to be quite similar to the result for the MPS
calculation shown in Figure 2-33. The overall appearance of the two pulse
shapes is very similar with a noticeable concentration of power at small
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delays for the MPS case as compared to a slightly more spread out situa-
tion for the statistical signal generator case. For the MPS case shown: in
Figure 2-33, the mean time delay, <t>, is 1.1 chips and the time delay
jitter, o,, is 1.4 chips. For the statistical signal shown in Figure

3-22 the mean time delay is 1.2 chips and the time delay jitter is 1.7
chips. In both cases a chip is the unit of time T, here equal to 488.3
nsec. The theoretical result in the thin phase-screen case is 1.3 chips
for the mean time delay and 1.8 chips for the time delay jitter.
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Thus rather good agreement is obtained for the MPS results and
the statistical signal results when compared to theory. One should keep
in mind that the MPS calculation is a direct solution to the parabolic
wave equation and involves no approximations. The theoretical calculation
requires a number of approximations to obtain solutions for average quan-
tities and hence suffers in accuracy relative to the very general MPS
calculation. The theoretical calculation includes both dispersion and
diffraction effects but the statistical signal generation technique is
only applicable to the diffraction effects. The rather good agreement
shown in this example indicates that the heuristic method devised to

calculate the Rayleigh or diffraction part of the composite signal is
adequate to the task.
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3.5.2 Example 2: Focusing Important é

As another example of statistical signal generation consider a
case where large scale structure leads to focusing and to other effects of

large phase irregularities. As in the previous example the MPS results .
are compared to the statistically generated results. :

The scattering geometry is identical to that of the previous
example. A plane wave propagates through a 1000 km thick scattering layer
and then propagates in free-space an additional 1000 km to the receiver :
plane. The carrier frequency here is 7.5 GHz, the phase standard deviation ]
is 300 radians, the outer scale is 10 km and the inner scale is 10 m. In
the MPS calculation, ten phase-screens are uniformly spaced over 1000 km
to represent the thick scattering medium. A grid of length 100 km is
divided into 16384 points to represent the signal amplitude and phase.
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For this example, 32 discrete frequencies are used over a two-sided band-
width of 80 MHz. This bandwidth is chosen as the null-to-null bandwidth.
of a PN spread spectrum code with chip rate of 40x106 chips/sec or to
represent a single, band-1imited, triangular, modulated waveform with T,
equal to 25x10-° sec.
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; Figures 3-23 to 3-30 show the resulting time-domain waveform and
some related measurements from the MPS realization. Figure 3-23 shows 101
samples of the magnitude of the envelope of the received time-domain wave-

; form. Each of these 101 samples is taken from equally spaced points along

J the entire MPS calculation grid. Thus each curve is separated in distance
by 990 m and very little resolution along the x-axis is shown. More reso-
lution is shown in Figure 3-24 which shows the received time-domain en-
velope for the first 101 MPS grid points. The spacing between each grid

’ point is 6.1035 m corresponding to 16384 cells equally spaced over a 100

km distance so that the 101 curves shown in the figure correspond to a

total distance of 616 m along the MPS grid.

The effect of the large scale phase irregularities is apparent
in Figure 3-23 and 3-24 in the appearance of many noticeable instances of
signal focusing where the peak amplitude is greater than unity. This
focusing results in a measured value of the Sq scintillation index of

[ 1.15. Values of S4 greater than unity are indicative of focusing ef-
fects. The focal length for the largest (10 km) irregularities is given by
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which is 26,180 km. Thus the receiver plane is well inside the focal

4 distance of the largest irregularities and this example is dominated by
large phase effects. These large phase effects are apparent in Figure
3-23 where the received signal is seen to vary in mean time delay with no
1 dispersive signal spreading. DNispersive effects are not strong enough

3 here to cause pulse spreading.
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Figures 3-25 and 3-26 further illustrate the point. These
b figures show the mean time delay <t> and the time delay jitter o_as a
b function of distance along the MPS grid. As can be seen the mean time
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Figure 3-23. Envelope of the received time-domain waveform--MPS
signal realization.
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Figure 3-24. Envelope of the received time-domain waveform--MPS
signal realization.
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delay varies slowly with distance and corresponds to the location of the
signal peaks shown in Figure 3-23. Notice the negative mean time delay
(early arrival) at the beginning of the realization and the increasingly
tate time of arrival (positive delay) around 40 km in the realization.
Both of these features. are evident in Figure 3-23.
| Figure 3-26 shows the value of ¢ obtained for each individual
MPS cell in the MPS grid as a function of distance along the MPS grid. g
4 For the most part the value of ¢, is constant and equal to the spread of 4
I a triangular signal, 0.316 T. (see Equation 2-73). Thus the major dis- 4
persive effect in this MPS calculation is increased time delay that is f
accompanied by very little pulse broadening. 2
; However in the range from 40 to 50 km along the MPS grid there ?
is some very interesting phenomena occurring with evidence of isolated, 2
high measurements of <¢> and e Figure 3-27 shows the peak amplitude E
of the received time-domain envelope as a function of distance along the f
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Figure 3-27. Peak signal amplitude as a function of distance along
the MPS grid.
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MPS calculation grid. Notice tiiat there is an extended region of about 10
dB fading at around 40 km and & region of very deep fading or defocusing
near 45 km. These deep fading regions are responsible for the large
observed values of <r> and o,.

Y s

' Figures 3-28 and 3-29 show closeups of the plots of <t> and o
for the region from 40 km to 50 km on the MPS grid. It can be seen that
the large values of <t> and o, near 45 km coincide with the region of the
deepest signal fades shown in Figure 3-27. It is also apparent that the
isolated large <t> and o, measurements coincide with small regions where
the signal level is very low. These isolated, large <t> and ¢, measure-

A ments are not artifacts or errors in the simulation but rather they are

% caused by large phase decorrelation across the signal spectrum which has a i
1 much higher probability of occurrence during deep fading conditions. The ¥
o reason for the higher than normal phase decorrelation during deep fades is 3
; that, in general, fades are caused by cancellation of signals coming from %
b different directions. For very deep fades to occur, such cancellation

: must occur over much of the signal bandwidth. Under these circumstances
very little change in frequency (or direction of arrival) is required to
obtain quite a large change in signal phase.

R P L RN

‘ Figure 3-30 shows the received time-domain signal for the range

from 44.5 km to 46.1 km on the MPS grid. Notice the increased mean time
1 delay of about 0.4 chips at the front of the figure caused by propagation
through a large striation. At the back of the figure, corresponding to
the very deep fade location, phase decorrelation across the signal spec-
trum causes a very extended received time-domain waveform so that some
aliasing is apparent. This type of deep fading behavior is associated
with the occurrence of focusing and defocusing and is not modeled by the
statistical signal generation of Rayleigh fading signals. However this
behavior is handled correctly in the MPS propagation simulation.
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- Figure 2-37 in Section 2 shows a comparison of the magnitude of
' the two-frequency mutual coherence function calculated from the MPS reali-
zation versus the theoretical strong scatter solution given in Section 4.
As seen in the figure, there is some disparity between the two calcula-
tions. The source of the differences lies in the fact that the theoretical
% calculation is a strong scatter approximation not exactly valid for the
focusing/defocusing conditions characteristic of this MPS calculation.
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Figure 3-28. Mean time delay, <t>, as a function of distance along
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Figure 3-30. Received envelope for MPS calculation from 44.4 to
45.0 km along the MPS grid.
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In order to generate the Rayleigh portion of this time-domain
sign2l it is first necessary to determine the values of the phase standard
deviation 4R and the outer scale Lp of the Rayleigh signal compon-

, ent. These values may be obtained from Figures 3-2 and 3-3 for the value
‘ of £ of 9.5x107° as

QR

—

R S

= 5.0 rad

' (o]

¢R

L 168 m

g A g e DM R Y b A ATE N e

Values of the important signal parameters og and wcgpp are found as

WeohR = -nwao/AAzzragR = 5,97x108 rad/sec

S BT L e Yty pmen SRSkt N

ap = w0°¢R/wcohR = 15.8
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where the inner scale for the Rayleigh signal component is taken as 1.68
m. Since the inner scale always appears in the logarithm for a K~3 one-

dimensional phase power spectrum, small changes in its value have little
effect.

As is the case in the previous example, it is desired to obtain
a statistical realization of the received complex envelope for comparison
to the MPS results. Thus realizations of the function U(x,z.,vtuy)
are required.

Again U(X,Zr,v+wb) is generated at 32 discrete frequencies
over the null-to-null 80 MHz bandwidth which corresponds to a chip dura-
tion, T., of 2.5x10~8 sec and a PN code rate of 40 Mps. Thus 32 delay
cells are used with

At = 1.25 x 10"8 sec
and a total delay interval of

T =232at=4.0 x10"7 sec

To generate the impulse response function h(x,z,,t) the dis-
crete values of the delay v range from

~2.5 x 10"® sec < v < 3.625 x 10”7 sec
which corresponds to

-14.93 < w7 < 216.5

h

Figure 4-3 for o equal to 10 shows that all the power in the impulse
response function is contained within the limits

'005 -S (ﬁcohT S. 4

so that the range cited above is more than sufficient to obtain all the
power. In fact the samples of S(K,t) are negligible outside the limits
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-0.5 < wcoh‘tf_ 4

Thus, in this example, the impulse response function h(x,zr,r) has pro-
perties simiiar to a delta function since it is non-zero at only a few °
values of delay. The transform of the impulse response function

; U(x,2p,vtuwy) is then relatively constant with frequency v and thus
exhibits high correlation properties with respect to v.

As in the previous example, 1024 cells are used to represent the
| variation in x with a value of ax of 2.03 m which is precisely 3 times the
value used in the MPS calculation.

R

Figure 3-31 shows the amplitude of the received complex envelope
le(x,2z.,7)| as a function of x and v. 101 curves are shown each repre-
senting the received signal as a function of ¢ and separated in distance x
by 6.10 m. This figure should be compared to Figure 3-24 which shows

FER P N s Y S AP

£ et s

SR -ALA

08 e s PR S B AR T e AR FID

AMPLITUDE

Figure 3-31. Received envelope for statistical signal realization.
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similar results for the MPS calculation. It is apparent that this reali-
zation of the Rayleigh component of the received signal has none of the
focusing/defocusing properties or the large slow variations in mean time
delay evident in the MPS calculation. This behavior is, of course, a
consequence of the definition of the Rayleigh signal component which is
that portion of the signal with Rayleigh fading statistics.

L A R A T

.

Comparison of Figures 3-24 and 3-31 show that the statistical
calculation for the individual time-domain signals are similar to the MPS
calculation. However the large scale focusing and defocusing effects are
not represented. In addition, the large slow changes in the mean arrival
time caused by large scale phase variations are also not included in the K
statistical realization. ?

e

Numerical calculation of the two-frequency mutual coherence :
function for this statistical signal realization shows constant correla- ‘
tion with frequency for both amplitude and. phase of r for all values of ;
ax. This correlation property has already been discussed and is another
indication of the absence of severe frequency selective scattering and -
diffractive effects in this example. !
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It should be noted that the comparisons shown in this example
emphasize the differences in the signal realizations formed by the MPS
simulation and the statistical signal generation technique. This approach
was taken because it yields an interesting discussion of the different
aspects of electromagnetic wave propagation. For the study of the effects
of strong scintillation on receiver performance, it is always sufficient
to consider only Rayleigh fading, which is the worst case for a one-way
propagation path through strongly turbulent ionized media.
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: SECTION 4

" TWO-FREQUENCY MUTUAL COHERENCE FUNCTION
ﬁ

1

In this section an analytic solution is obtained for the two-
, position, two-frequency mutual coherence function for spherical wave prop-
| agation. It is assumed that strong scattering conditions prevail and that
' the quadratic approximation to the phase structure-function is therefore
valid.

R A Py TR ST

This approximation was used by Sreenivasiah, et al., (1976) for
the case of plane wave propagation. Furthermore, Sreenivasiah and
Ishimaru (1979) have recently generalized their previous results to obtain
the two-frequency mutual coherence function for beam wave propagation in
homogeneous turbulence using the quadratic structure-function approxima-
tion. More recently the two-position, two-frequency mutual coherence
function was obtained for spherical wave propagation using the extended
Huygens-Fresnel principle (Fante, 1981). Although the quadratic struc-
ture-function approximation can sometimes lead to difficulties (Wandzura,
1980) it is appropriate for calculation of the two-frequency mutual coher-
ence function but not for calculation of higher moments of the field
(Fante, 1980). Fante discusses the accuracy of the quadratic structure-
function approximation (Fante, 1981) for the case of atmospheric turbu-
lence with a Kolmogorov power spectrum of irregularities. He has found
that the accuracy is a function of the irregularity power spectrum and of
the strength of the turbulence (Private Communication, 1982), with :
accuracy increasing for stronger scattering. :
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The strong scatter solution presented in this section forms the
basis of the statistical signal generation technique described in Section
3 of this report. Here the turbulent jonized medium occupies a thick
finite layer with transmitter and receiver located in free-space on oppo-

site sides of the layer.
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General analytic solutions are derived for two cases. In the
first case the random slab is represented by a one-dimensional power spec-
trum of electron-density fluctuations which corresponds to propagation
through elongated irregularities as would occur for an equatorial satel-
lite link to a ground station. In the second case the random slab is
represented by isotropic ionization irregularities which would occur in
the ionosphere for propagation roughly along the direction of the earth's
magnetic field. Both cases taken together represent the extremes of the
range of results to be expected for propagation through ionospheric fluc-

tuations, or ionization irregularities caused by barium cloud instabili-
ties or by nuclear detonations.

The complex general analytic results obtained for the two cases
of interest are simplified by the use of the thin phase-screen approxima-
tion (zero slab thickness) to obtain tractable expressions for the two-
frequency mutual coherence function as well as its Fourier transform,
referred to as the generalized power spectrum.

The accuracy of the thin phase-screen approximation is a matter
of some importance to this work. This approximation is considered in some
detail in this section where comparisons of the case of a thick layer to
the thin phase-screen case are presented for the S, scintillation index,
the mean time delay, and the time delay standard deviation.

4.1 FORMULATION

Consider a monochromatic spherical wave E(p,z,w,t) which origi-
nates from a transmitter located at (0’0"Zt) and propagates in free-
space in the positive z direction where it is incident on an ionization
irregularity layer which extends from 0 < z < L. After emerging from the
layer at z = L, the wave then propagates in free-space to a receiver
located at (0,0,z.). This geometry is shown in Figure 3-1 in the

preceding section. As the wave propagates, its phase substantially
behaves as (-i<k>z+iwt) so write

E(5,Z,0,t) = U(B,2,0) exp{i(ut-fk(z')>dz')} (4-1)
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where <k(z)> is the mnean wave number given by

Kkiz)> =4 (1 - Ne/nc)llz = k(1 - k2K?)

1/2
c

(4-2)

where ¢ is the speed of light in a vacuum, N is the mean ionization
density, n¢ is the critical electron density and is related to the clas-
sical electron radius re by nc = w/(A%rg), (re = 2.82x10~15 m).

It has been shown that U(p,z,w) satisfies the parabolic wave
eguation under the Markov approximation, (Tatarskii, 1971; Yeh and Liu,
1977)

2
ANe f_p.
N> o2
vy - 2i<k(z)> & - &2(z)> £ U =0 (4-3)
.} (l-wglwz)

where aNo is a small variation in the ionization level and wp = kpc
is the circular plasma frequency of the background ionization. The
exponential time dependence has been suppressed and it has been assumed
that wp << w, otherwise signal attenuation would be the dominant effect.

4.1.1 Power Impulse Response Function

Now consider the case where the transmitted waveform is no
longer a monochromatic wave, but can be expressed as a waveform modulated
on a carrier

iw t

m(t)e °

where m(t) is the transmitted modulation waveform or transmitted complex

envelope and w, is the carrier angular frequency. Now 1f M(w) is the
spectrum of the transmitted complex envelope,

M(w) = _7'm(t)e"""tdt (4-4)
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then the received complex envelope can be expressed as
- 1 5 — jut
e(P’zrot) = 2—1}' -.!:M(N)U(%zr.aw"wo)e mdw (4"5)
where U(p,2zp,w) is the solution to the parabolic wave equation at the

receiver plane z.. This result is proven in Section 3 of this report.

The average received power is given by

Hz,t) = <eer> = Z%E‘!;I.M(N)M*(m') W(Bszsutuy JU (B2 sw'*a )>

LT LFIPN (4-6)

The two-frequency mutual coherence function, r, is the quantity in the
angle brackets. Under the assumption (to be justified later) that r is a
function only of the transverse spatial and frequency differences, Equa-
tion 4-6 may be transformed using the sum and difference transformation

1
€
1
€

“q

w

s % (wrw') (4-7)
I —
I(Zr’t) = m!;fM(ws‘*md/Z)M*(ws-wd/Z)I‘(Ap-O,Zr,wd)
'iwdt
x € dugduy (4-8)

Since the input signal is m(t), the input power is given by

1{t) = m(t)m*(t) = ﬁzug“wm*(w')e"(“"“ Roudet (-9
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Using the same sum and difference transformation, the input power may be
written

o it
I(t) = ;%sz"‘(“’s’””d/z)“*(‘”s““d/” e ¢ dudog (4-10)

Now if the input power I(t) is a delta function

© udt
1(t) = s(t) olud duy (4-11)

21r S

it is apparent that
%—-{ M( w +u)d/2 (wsv-wd/Z)du;S =1 (4-12)

So for the special case of an input power delta function, the
output power at the receiver is

1 ® _ imdt
6(z,58) = 5 S (a50.20)e © duy (4-13)

where the new symbol G has been introduced for this important function.

Now to find the output power response to a general input I(t),

first multiply Equation 4-10 by exp(-igjt) and integrate with respect to t

o -'Iw'dt (d d)t
fI(t dt = - 2 _[fM w+md/2)M*( G-ugl2)e dududt

L F Wugray/20M (g u/2)dug (4-14)
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The above result comes about because the t integration yields a delta
function, 2n8(wd-wq'). Now use Equation 4-14, just derived, in
Equation 4-8 to obtain

-jw,t’ iw

© t
| ' (. d '
I(zr,t) = E;.{;['I(t )e P(Ap'o’zr’“H)e dudt

w w fw,(t-t")
= f1(t") _;; S o650,z 000 & dugt’

= ] 1(t')6(z,,t-t')dt’ (4-15)

The second expression above is recognized as a convolution. Thus the
output power due to a general input power is given by the convolution of
the input power with the power impulse response function G(zp,t).

The derivation above follows the basic outline given in Ishimaru
(1978) and is included in this report to serve as an aid to the notation
and to emphasize the importance of the power impulse response function
G(zp,t). It will be seen that the moments of G(zp,t) serve as useful
definitions of the mean time delay and time delay jitter which may be used
to characterize the severity of the propagation medium,

4.1.2 Two-Frequency Mutual Coherence Function

Thus the two-frequency mutual coherence function I is important
for the calculation of pulse propagation in a random medium and it serves
as a basis from which to calculate the important power impulse response
function and its momerts. Under the Markov approximation, I satisfies the
following equation (Tatarskii, 1971; Yeh and Liu, 1977).

ar,

ko2 -k V%,)T
PRI (k2¥{1-K1V]2)

- 3 [21B1ka8A(51T2) - (Ki%8 ko %8, PIA(0) P = 0 (4-16)
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where

r = <U(X1 ,Yl ,Z,(ol )U*(xz Qyz ’29“‘2))

and k; and k, are the wavenumbers at two frequencies w; and wjp,
respectively, and Yfl is the two-dimensional Laplacian

2 2
1 2 2
9X) Y1

with a similar definition for sz.

Following Yeh and Liu (1977) let

2 2
8 = 1 wp /2/1 : (4-17)

with a similar definition for B8,.

The function A(p) is the integral of the autocorrelation func-
tion of electron density fluctuations, Bz, in the direction of propa-
gation

MF1-p2) = [ Bg(P1-p2,2' )d2' (4-18)
where
P1-02 = (X1=X2,¥1-¥2)
e Mo
Ne>
so that
iK, + (71-62) -
S 1
AF1B2) =2 [ fe 0, (K, K,=0)d%K, (4-19)
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where o is the power spectrum of electron density fluctuations. Equa-

tions 4-18 and 4-19 depend upon the validity of the Markov approximation
where it is assumed that the electron density fluctuations are delta-cor-
related in the direction of propagation (Fante, 1975). That is

Bg(-51"52’21"7-2) = A(p1~0,) 8(2)-2,) (4-20)
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Now the sum and difference substitutions

X = (x,4x,)/2

T3 o At e b FET RS # e A L SO XA I L

T = X1=X,

Y = (yyty,)/2
n=Yy-y :
kg = (ky+k,)/2
ky = ky=k,

and the assumption that the frequencies of interest are much greater than
the plasma frequency so that

81 mpZ/wlz

B2

7

wpz/wzz

enable Equation 4-16 to be rewritten as

or i 2.1 2
R A Ve + Kk V4 -2k ¥ o9
YA 2(k§-k3/4) [ dd 4 ds svg d]r
4
- 1] A(gn) - {d-+ LY Kk*(0)|r =0 (4-21)
1 2
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chj = _a__ + 3 5

a2 an? i

2

~ 3
f 2 2
; vg =9 437 b
X2 a2 :

. £
! 2 2 3
; VSon= .._a_.. + _..a___ ;
ozdaX  anaY i

]

;

3

2+2 2(z+z

I

% T is now written in terms of the above sum and difference arguments as

% . r(z,n,z,0y4) where wy = cky.

i The unknown two-frequency mutual coherence function may be ;
g‘ written as r = ryry where Iy is the exact free-space solution in the :
i parabolic approximation :
5 1\2 =ik (x1*+y]) + ika(xoty)) ;
s 0 = (__) exp (4-22) :

t t)

X which under the sum and difference transformation used previously becomes

s -k
‘ T = (__L_) exp S

Z+2z
t

ghen¥) - ik, [(X2Y2)/2 + (g2+n2)/8]

(2+z

(4-23) :
£ :

Substituting I' = ' Ty into Equation 4-2] and neglecting near zone terms of
the order of ksz?/(z+z¢) and smaller, one obtains




W 3Ty - A T AN ORI A e e Ty T T T T g PR R A o 2 s o e e T s TR fed e L oL mee T o T e L e T T T e T T . T e, ey e e =
~ coalig A v o ~ - EaaE i B -
23 %] p
e " g
E-? A
-
G

AN
a0

faal

Y
e A
renraaraabot e i =
ar.

k
ar d 1 3 3
1 vir, + [z; Z_+q __]rl

i
2 (k2-k2
3z 2 (kS kd/4) (z+zt) Y4 n

Wy e b ae 41

B

1
- 24 )kSA(O) r

4
l kaA( £ n) )
8 k3

»
RyU

3 , kika

xR S R RN R A A SN AC T S

2 B v R S e R

cep O ar

. + terms with 201 4211 _ g (4-24)
S X Y

L

4 Equation 4-24 is valid in the region 0 < z < L with boundary

- condition

A SRR

L ry(gom,2=0,uy) = 1 (4-25)
4
; Since the boundary condition is independent of X and Y, and the equation §
o has no terms other than the derivatives with respect to X and Y, it is %
y apparent that i
)%. g
: LIS SR
- X oY p
b Now the substitutions :
o 2" =z2+2 (4-26) !
. . t ;

< 6 =g/z' = ;/(Z+zt) (4-27)
4
$ = n/z' = of(2+z,) (4-28)
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omato v = avetw

M 3 kg g P2+¥]r
azt 2 (k§-k§/4) z'2 302 342 !
2k*A(z' (6+4))
-% b - (.1_; + %)kSA(O) r, =0 (4-29)
1™2 kZ k1

The additional substitution r; = r,r; where

1 \ 1 _1)2
ry = exp{ "3 A0)(2'-z )k (k—1 - i;) ; | (4-30)

yields the simplified equation for T,

Mo ik 1 2, 92 i %
S2id [ N ]rz-___ [A(z*(e+4)) - A(D) ]rp = O
32" 2k22'2 [00% 242 4 k2

(4-31)

where kj has been neglected with respect to k. The effect of this
assumption is to restrict the validity of the solution to a small range of
wavelengths centered about K.

Again following Sreenivasiah (1976) and Yeh and Liu (1977),

expand the function A(z'(6+¢)) in a Taylor series and neglect all but the
first two terms so that

A(z'(6+g)) = Ag + 2' Hetg) A, (4-32)

st b Bt e £

Equation 4-32 is the analytic expression of the quadratic phase structure-
function approximation.
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4.1.3 Ag and Ay CALCULATION

4.1.3.1 Isotropic Irreqularities

The Ay and A, coefficients may be calculated for isotropic
irregularities by performing the angular integration in Equation 4-19 to
. obtain

[AE S el AR S G AR

A(1-B2) = 4n® fJo(K.p) 0.(K,,K,=0) K dK, (4-33)
0

AR

where

B A

s

2_y 2 2
K,“ =K+ Ky

Kiind

. S

WY

T
i

= r31432|

The J, Bessel function may he expanded in a power series and coefficients
of equal powers of p equated to obtain

Ag

412 [ 0.(K K ,=0) K dK, (4-34)
0

N ST S e N

A2

RO

-nz{og(K_L,KfO) K, 3dK, (4-35)

Y

a) Gaussian PSD

Fatr AR AN g

For a Gaussian power spectrum of the form

{ £

- 3
o (K) = —2 L0 expi- k2 ,2/4) (4-36)
v
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2 j § 3
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3 §
- 3
3 ' with corresponding autocorrelation function %
k> oﬁ E
. B(r) = —=_ exp {-r?/L42} (4-37) !
4 N2 i
i it can be shown that :
b o2 b
b /2 Ne 4
o Ap = Lon (4-38) §
i) <N >2 é
e
i o ;
‘ /2 °N ;
3 Ay = =T ez (4-39) §
\ Lo <Ny a
i b) Power law PSD ;
ﬁ Consider a power law spectrum of the form ;
3 62 (7-\=3/2 (p-1)/3 2 2 :
o N.(27) 2:(2:/L ) K LK+ 1/L ;
l, o (K) = ¢ ittio p/ 2\ 0 (4-40) E
| - 2 ‘«z—"'z')pf 2 :é
g Ne? K(p-a)/z(zi/Lo) (21“K MR ;
'% ' which has a K*P behavior for 1/K ranging from Ly, the outer scale to ;
3 14, the inner scale. The corresponding autocorrelation function is :
(p-3)/2 3
A 2 “1/n2 2 ~1/pn2 2 5
'§ ONe (LO Vré + li) K(p"3)/2("0 /ré + 21- )
L B(r) = e |
A . p-3 . :
4 <Ne> (2J/Lo) K(p-s)/z(z1/Lo)

L (4-41)
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b
‘§ For the general K=P power law spectrum it can be shown that
) > Ao =[(2n25Lg) V2 ¥B22 (2./L) "u (25/L0) | =5 (4-42)
5y 2
; 2 <N >
q
.
- / i
o A, = - (1:/(2311.L0))1/2 Kp-4 (/L) Kp-3 (2,/L0) _Ne (4-43)
3 i 2
i 2 / 2 <N >
i
E
3 For 27 << L, and the commonly tsed K=* spectrum
A 2
S oNe
4 Ag = 2Ly (4-44)
5 N2
b
i
J o2
4 zn(Lo/li) Ne
i Ay = - 5 (4-45)
3 Lo <Ne>
- 4.1.3.2 Elongated Irregularities 3
. ;
% | For the case of irregularities infinitely elongated in the é
k y-direction, there is no y variation and the twe-dimensional equivalent to E
g Equation 4-19 is 3
| . j
5 A(xy=X,) ane op(K, K,=0)dK, (4-46) .
-g Here the exponential may be expanded as the Taylor cosine series since ¢ é
é ' is real. The results for the coefficients A, and A, are identical to g
k- Equations 4-42 and 4-43 with the exception that the three-dimensional PSD g
2 for electraon density fluctuations is replaced by the two-dimensional PSD. g
] The two-dimensiona} PSD is :
] i
4 159 %
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[

of (Zu)'izg(zi/Lo)(P-3)/2 K(p_l)/z(zi/kf + K2+ 1/L2
SNe(Kx QKz) = &

2 2
<Ne> K(p-a)/z(zi/l’o) (.Q,iv/Kx + KZZ + l/Lg

(4-47)

)(P-l)/z

The two-dimensional autocorrelation function corresponding to this
two-dimensional PSD is given by Equation 4-41. It is now easy to show
that the values of Ay and A, for infinitely elongated irregularities are
identical to the values for isotropic irregularities.

In the work that follows, the ratio of the constants A, and A,
appears often. At this point it is noted that for a three-dimensional
K=P power law electron density spectrum

A
KE = - Ly2(2p-8) p>4 (4-48)
2

Remember that the corresponding one-dimensional phase PSD which is often
used in this report has a k-(p=1) power law form.

*

a.1.4 oi CALCULATION

&3
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i It is useful to establish the relationship between the coeffi- ‘
’ cient Ay and the variance of phase fluctuations, ¢ 2, For a layer of

jonization Az thick the incremental phase-shift is given by

T s S L

S u o e A s A e s
0 O PN et e Ve

k. 82/2 (x,y,2)dz
84(%,3) = 5> f ¢ (4-49)

n
-Az/2 ¢

. where we have assumed that the critical electron density, n., is much ;
greater than the mean electron density and have expanded the formula for :
the index-of-refraction (neglecting collisions) in a power series and K
retained only the first two terms. Now from the correlation function of
the phase fluctuations

S R L
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k2N >2 2 <N (X,¥,,2) 8N (x5,¥5,2')> dzdz’
<Bo(x1>¥1)20(x20y5) = 22 uf{/' ¢ €
4t i <N >2

(4-50)

The double integration can be reduced to a single integration by a change
of variables (Papoulis, 1965, p. 325), so that

Azkg<Ne>2 AZ _
(A¢(X1,y1)A¢(X2,y2)> = ———— f 8561'92,71) (1 - lnl/AZ) dn

4n?
C -AZ (4_51)

If az is greater than the correlation length of electron density fluctua-
tions, then the contribution of the second term is negligible and the
integration limits may be changed to plus and minus infinity. Evaluation

of the resulting expression at 5,-7, = 0 yields

2 2
k0<Ne>

2 - - 2 -
o¢ ) LAO ; kaAo/k0 (4-52)
C

vhere Equation 4-18 is used for A, and L is the total thickness of the
layer of ionization irregularities.

zation power spectrum, A, is given by Equation 4-44 and

For a K** three-dimensional ijoni-

c¢2 = 2(xre)2LL°a§ (4-53)
e

where oﬁ is the variance <r the electron density fiuctuations.
e

4.1.5 I SOLUTION

Now that general expressions have been derived for the coeffi-

cients A, and A,, the solution for the two-frequency mutual coherence
function may be continued. Introduce the additional substitutions
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_1
as— k X (4-54)
=1 by 2 -
b-z k' /kg (4-55)
v = (abAy)}/2 z' = a2 (4-56)
we (=217 6= a0 (4-57)

a%bA,
- = a6 (4-58)

1 \i/s o
adA,

With these substitutions Equations 4-31 and 4-32 may be combined to yield

2 2
M i L [3_ + .a__] rp = (w2+e2)v2r, = 0 (4-59)
v v2 ou 9e

The boundary condition becomes
Palusesv(abhy) Y22 ) = 1
An analytic solution of the form

rp = f(v)exp{-g(v)(u?+e?)} (4-60)

may be substituted into Equation 4-59 to obtain the following two
equations, the first consisting of terms independent of (y%¢?)

f L 145 .y (4-61)
v v2

and the second consisting of terms with the factor (u2+e?)

sAn2
89, 140% , 2o g (4-62)
v vz
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This pair of equations may be solved exactly with the result

* flo) s % (4-63)

ctvtCOSho,( V- ;t—)Ts inha( v-vt)

(4-64)

[}

i : ' g(\’) = N
\ 4 av, coshaf v-vt)+smha( v-\:t)

? : av, Sinha( v-v, )+cosha(v-v, )
1'iv1-av(t t t;)
4 3 t

2 | ' where
’ | o= 2eM4

%
1]

A ‘ v (abAz)l/2 2= 3,7,

B E\’
g
’4!
z
-4
3
\3,
2
g
2
§
g
2
¥
3
3
!
3
5
i
4
3
H
:
;
4
)
H
£
é
3
3
'
3
\
7
4
i
:

Equations 4-30 and 4-60 may be multiplied to obtain the desired
solution for Ty in the ionized layer where

PR U Dyt

Shsas S

or

o S G

=
N
FaS
~N
N
—
+
~N

. In transcribing Equation 4-30, ky has again been neglected with respect
; to kg to obtain

T1(8:9:2"suy) = exp [-Ag(2'-2 Jkok/Bk¢ ]

R z-i"é'?é:":ﬁ"p\ ok

s

[

x f(a,2') exp [-a,2(6%+¢2)g(a,z')] (4-65)

RS NSAi

3 In accordance with the definitions given by Equations 4-33 and 4-34, A, is
. ' used to replace A(0) in the expression for r,.

RSB

P
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To complete the solution it is necessary to solve for r, in the
region

or

.,
bt b

i
~N
A
N
+
N
o

HEL

| Equation 4-65 serves as the boundary condition at z' = L+zy. Since the
region z' > L+z; corresponds to free-space with no ionization, Equation
4-29 is appropriate where the last term, which is dependent on the func-
tion A, may be neglected since A is zero in the absence of ionization
irregularities. Also, in keeping with previous assumptions, the kd2
term is ignored with respect to the ks2 term in Equation 4-29,

The Fourier transform pair

. o op A
LS AT SRR o e i N 0 SN

®® (K e+K
P1(9,¢,Z',u)d) =ff ( 8 rl(Ke,Kt’z"wd)dKequ) (4'66)
. 1(K oK ¢)
Py {KgsKys2'suy) = (1/20)° ff ¢ ry(e,¢,2',uy)dedy  (4-67)

- 0= 00

may be substituted into the suitably mudified Equation 4-29 to obtain the
algebraic equation

N P LB e ey

oT,

i
3z 2

3ASRS el o A I A7 L

2Yp, o -
—15( 22Ty = 0 (4-68)

"l
[Z N N R =

Equation 4-68 may be solved and the boundary condition 4-65

applied at z' = L+zy with the result 2
rl(Ke’K¢’zt+zr’wH) = rl(Ke,K¢,L+zt,wd) é
xexp [-1v(KZK2)] (4-69)
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where §

K, (z.-L) :

-1 4T (4-70) /

2 kS (L+Zt)(zt+zr) %

o The final result may then be obtained by taking the Fourier transform of é
e Equation 4-65 to obtain rl(Ke,K¢,z‘+zt,uu) and then taking the inverse ;
Fourier transform of Equation 4-69. The appropriate Fourier transform. j

pairs are given by Equations 4-66 and 4-67. The required integrals are %

: easily found in Gradshteyn and Ryzhik (1965) and the result may be written %

% 5 as §
g I'I(Coszrsmd) = Pl(c,n,2'=2t+2r.wd) i
?; ?
[%“ = exp {-o;wglzug} fla(L+z,)] E
= ;
3 (g2n?)a 2g(a)(L+z,) [/ (z,42,)? :
’% X EXPpQ - - ¢
3 1 + i4ya%g[a)(L+z,) ] f
% 3
: x {1+idya %g[a)(L+zy) 1}~! (4-71)

where the ¢ and ¢ coordinates have been transformed into the g and n co-
ordinates according to the transformation of Equations 4-27 and 4-28. The

LET
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§ ? subscript I on r has been introduced to denote that the solution is appli-
? cable to the case of isotropic ionization irregularities. The case of

E | elongated irregularities follows., The first exponential term in Equation
z ‘ 4-71 comes from the first exponential term in Equation 4-65 where the

%. relationship between ¢,2 and A, given by Equation 4-52 has been utilized

f to simplify the resulting exponential.

3 4.1.5.1 Elongated Irregularities

%_ For transionospheric propagation the case of elongated irregu-
% larities may be more appropriate than that of isotropic innization irregqu-
4 larities. To model elongated irregularities, assume that the striations
jg are long tubes, infinite in the y-direction shown in Figure 3-1,

3

!
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For this case the splution proceeds in the same manner as described for
the case of isotropic irregularities.

The develooment differs since there is no y dependence in the
case of elongated irregularities. Thus the factor of 4 in Equation 4-61
becomes a factor of 2 for elongated irregularities. The resulting solu-
tion for the function f is then the square root of the result obtained for
the isotropic irregularity case. Equation 4-62 for g remains unchanged.
In the succeeding development, the only difference occurs because ona-
dimensional Fourier transforms are involved rather than two-dimensional
transforms as are used for the isotropic irregularity case. The final

result for r, for the case of elongated irregularities is
PE(;’zr’“’d) = exp {'0,%“’(%/2“’3}{1:[31(“21;)]}1/2

;23229[31(1-*21;) ]/(zr+zt)2

1+ i4ya229[a1(L+zt)]

x exp (-

x {l+idya,%g[a,(L+z, ) ]}V 2 (4-72)

where f and g are defined by Equations 4-63 and 4-64. The subscript E on
I refers to the elongated irregularities.

4.1.5.2 Thin Phase-Screen Approximation

Further simplification is obtained if the thick scattering layer
is replaced by an equivalent thin phase-screen with infinitesimal thick-
ness and the same overall bhase variance, a¢2. As will be seen the
accuracy of the thin phase-screen approximation is a function of the
propagation geometry, the wavelength and the electron density PSD.

The thin phase-screen approximation has been used by many
authors and is treated in detail by Mercier (1962) and Salpeter (1967).
wernik, et al., (1973) and Bramley (1977) have examined the accuracy of
the thin phase-screen approximation for the calculation of the
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scintillation index. Rino (1980) and Rino et al. (1981) have utilized
this approximation to obtain numerical propagation results and to
successfully model observed data from the DNA Wideband satellite
experiment.

Here the accuracy of the thin phase-screen approximation is
examined in detail as it affects the calculation of the scintillation
index and the mean time delay and time delay jitter. It will be seen that
the maximum error in the use of the thin phase-screen approximation is
3 small; therefore this useful approximation is invoked here to simplify the
mathematics and to aid in understanding the results.

N AT

e Now taking the 1imit as the layer thickness approaches zero and g
3 utilizing the substitutions, i
L i
i b
-A (z,+z )2
o £
3 BT (4-73)
: 22202 2
te 2
,,. ¢
5 - + 3
3 Ty 22 Zt i nwvo(zt Zr) - ii
. Scon : ; (4-74) i
1 + :
o A2, (z+z,) >‘Azztzr"qs i
|
| , simplified expressions are found for the two-position, two-frequency H
% mutual coherence function in the thin phase-screen approximation :
54
T ?
3 : I (zynez 50,) = exp {" 2/20) } ;
i 1 r’d 4
R ¢
i
" ~( Cz* n?) /2(2) |
4 x expf ) (I+iug/w )" (4-75) :
< Hio/o co i
d’ “coh :
1 §
! ;
4 2
o '
1 1
5 5
4 ;
3
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rE(c’zr’wd) = exp {’O:Nglzwg}

-r2/92
x exp (_...C_{.&O__) (1+i wd/wcoh)' 1/2 (4-76)
Moyl uegy

Thus the thin phase-screen approximation allows the complicated
expressions 4-71 and 4-72 to be written in terms of the simplified param-
eters gy and weop. In the following it will be seen that g,, the signal
decorrelation distance, and wcqops the coherence bandwidth, are two very
important parameters which describe the characteristics of the signal

fluctuations.

Figure 4-1 shows the thin phase-screen model of the general
propagation geometry shown in Figure 3-1. The distance from the trans-
mitter to the phase-screen is zy and the additional distance to the
receiver is z.. The total free-space propagation distance is
zy+ze. It is apparent from Equation 4-74 that the coherence bandwidth
is a reciprocal quantity. That is, an interchange of transmitter and
receiver does not affect its value. However the decorrelation distance g,
is not reciprocal. g, is a measure of the average distance between fades
at the receiver and depends on the path geometry.

A more useful measure is the signal decorrelation time, «,,
which is a measure of the inverse fading rate or inverse fading band-
width, 1, is a time-domain measure of fading whereas p, is a spatial
measurement. The signal decorrelation time is given by the equation

= 0 (4-77)
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where Vo¢s is the relative velocity of the line-of-sight at the receiver
location. Although this velocity is a function of transmitter and re-
ceiver motion as well as irregularity motion, it is sufficient to consider
the case where the transmitter and receiver are stationary and the phase-
screen is in motion. Assume that the scattering layer consists of
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g Figure 4-1. Thin phase-screen propagation geometry. :
X §
% striations moving in unison at a velocity V perpendicular to the line-of- {
5 sight. Then the projection of these striations at the receiver location !
% due to a signal originating at z; has velocity ;
5 V(z +z,) H
%;i‘ i v ff = -—-——-———r t (4’78) ‘
‘; e 2 :
b t
Combining Equations 4-73, 4-77 and 4-78, the received signal decorrelation '

time is obtained as

..Ao ;
e (4-79) :

It is apparent that 7, is only a function of the layer velocity and is
reciprocal as it should be.
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For the often used K~2 in situ power spectrum of one-dimensional
electron density fluctuations, Ay/A, may be obtained from Equations 4-44
and 4-45 and the signal decorrelation time is given by

y2 L

T, = —_0 (4-80)
n(Ly/ )0V
4.2 GENERALIZED POWER SPECTRUM

At this point it is convenient to introduce the generalized
power spectrum which is defined as the Fourier transform of the two-
frequency mutual coherence function. The generalized power spectrum
serves two useful purposes. First, it is the basic function which is used
in statistical signal generation as discussed in Section 3. Second, it
acts as an intermediate function from which to easily determine the power

impulse response function. This latter aspect is considered in detail in
the following subsection.
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For the cases of isotropic and elongated irregularities, the
generalized power spectra are defined as

Xy

Sp(Ky K 200 7) (2ﬂ)‘3-.£.“.£ rp{zsmzasuy)

x exp [-i(d(chi(n)ﬁwdr]dz;dndwd (4-81)

o Bt I e st 20 A SR L OF

SE(KC’ZT’T) = (2“)-2:£;£‘r5(c'z”'wd) exp [-iaKé+iwdT]d;dwu (4-82)

it AN S L

The inverse transforms are given by

N N T

rl(;,n.zr,wd) =:£f SI(K;’Kn'Zr’T) exp [”(‘K;+“Kn)'1“’dT]dK;dKndT

- Q0w GO

(4-83)
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Te(252,.50y) =:£;£'SE(K;,zr,r) exp [+icKC-iwht] dKCdT (4-84)

In the case of elongated irregularities, the one-dimensional
generalized power spectrum is given by Equation 4-82. For the case of
jsotropic irregularities, the one-dimensional generalized power spectrum
is given as the integral over the two-dimensional spectrum (Rufenach,
1975).

- (4-
SI(K;’Zr’T) ;z:SI(K;’Kn’ZP’T)dKn (4-85)
Equation 4-81 is easily integrated with respect to K, to obtain
SI(KC’ZY‘,T (21\' ZL TI(C’Y\:O,Zr,T) exp [-i;KC+ide]d ded (4'86)

where Ty is evaluated at zero n because the integration yields a delta
function, The inverse transform of Equation 4-86 is

Pl(c,n=0.zr.r ffS ,2 » 1) exp[iK -md ]chdT (4-87)

- O0= 00

The integrals of Equations 4-81 and 4-82 can be computed by
recognizing that the interior integrals in these two equations with
respect to z and n are related to quantities computed above. That is,
from Equation 4-81

(Zﬂ)'sz rpc,mz.u) exp[-i(cch(n) Jdzdn

= PI(K;aKn9Zr’Ud)
m
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where fl is given by Equation 4-69. The (z¢+z,)? term results from the
transformation

D
n

;/(zt+zr) (4-89)

<
n

n/(Zt"'Zr) (4-90)

relating angles and distance perpendicular to the direction of
propagat jon.

In the case of infinitely elongated irregularities it can simi-

larly be shown that the interior integral of Equation 4-82 may be written
as

(1/2'"):!: FE( C;erwd) eXp['i CKC]dC

EE(K;’ZY"wd)

(242,07, (K 0272, ) (4-91)

where 51 in Equation 4-91 is the one-dimensional equivalent of the two-
dimensional result given by Equation 4-69.

Equations 4-88 and 4-91 may be substituted into Equations 4-81

and 4-82 to obtain simpiified expressions for the generalized power
spectra

SI(KC,KH,Zr’T) 1/2'" f I( ,Kn,Zr,wd) exp(iwd'r)dwd (4"92)

w

SE(KC,ZY_,T) = (1/24) f E(K ,Z ,wd exp(uyt)duy (4-93)

- 00
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The Fourier transforms of Equations 4+92 and 4-93 cannot be per-
formed analytically except for the case of a thin phase-screen. In this
special case it is possible to show directly from Equation 4-69 and its
equivalent for elongated irregularities that

2
%
7 . 0 - a202/2 w2 1 2 ) p2(14i

PI(K;’Kn’Zr’“‘d) = exp { o¢wd/2wo} exp | " (K§+Kn )2(1+iwg/u )}

(thin phase-screen) (4-94)

2
3 . 0 o 202/9 2 Lo 201,
PE(Kc’Zr’“d) = exp | a¢wd/205} exp { 7 Kc zo(l+1“H/“th)} :
(thin phase-screen) (4-95) g

In the thin phase-screen approximation the preceding four equations can be
combined to yield for the generalized power spectra

( ) Oeontad % (K2+K2) g2/ §

Si(K_ K 42_,1) = exp -(K4+K2) 22/4 :

AR 25/2,3] 2 r n’o ’;

-1 a?lw, T - (KZ'*'KZ)iZ,2/4]2 S'

‘E coh r v’ %

(thin phase-screen) (4-96) b

(K 42 1) = e 0% e f gy . L 2y, 1 - K202/4]2 :

A )3/2 ‘ go " 75 ¥ %oh" T o
k1

LI

' (thin phase-screen) (4-97)

where 2, and wcyn are given by Equations 4-73 and 4-74. The parameter o
is given by the equation

a = w0/°¢>wcoh (4-98)

B s G s PR PR A P ot e T

and will be shown to be an important measure of the ratio of the propaga-
tion distance to the focal distance of the largest irregularities.
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The one-dimensional generalized power spectrum for isotropic
irregularities is given by Equation 4-85; for the thin phase-screen
approximation of Equation 4-96 the integral is obtained from the tables as

g _pl/2

S, (K y2.,7) = N0 expl- K202/8 - 1 o2 [K202/4 - 12}
IWp 2™ = g P BT = 5 of BRI = Seon”
' x exp(B82/4a2)K s ,( 82/4a?) (4-99)
y
3 where
B = az[KilgM - wcoh'r] + 1 (4-100)

Equations 4-97 and 4-99 are the cne-dimensional forms of the
generalized power spectra which are used in the statistical generation of
realizations of the signal received after propagation through a strongly
turbulent medium. Appendix A shows plots of these functions for a range
of values of the parameter o. It is important to note that the one-dimen-
sional generalized power spectrum is required for the case of isotropic
irregularities since statistical realizations of the received signal are
desired that are a function of one spatial dimension only. Generation of
these realizations is discussed in detail in Section 3 of this report.
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4.3 POWER IMPULSE RESPONSE FUNCTION SOLUTION

o In this subsection the impulse response function due to a trans-
ﬁ\ mitted power delta function is determined in the thin phase-screen approx-
5 jmation. Equation 4-13 gives the power impulse response function as

oI,
07 S ek

o0

1'u)d'r
6(z,.57) = (1/2n) [ r(85=0,2 ,uy)e © du, (4-13)
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GI(ZY"T) =_~£SI(K§’ZY"T)dK!; (4'101)
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Equation 4-101 is true because the K, integration on the right-hand side
of Equation 4-86 yields the delta function 2x48(z) which is then integrated
with respect to ¢ to yield the right hand side of Equation 4-13. An ex-
pression identical to Equation 4-101 is found for the case of elongated
irregularities. Thus Equation 4-101 may be applied to the generalized
power spectra given by Equations 4-97 and 4-99 to analytically determine
the power impulse response functions:

w
6,(2,01) = CZ*‘ exp {~(au,, 1) 22} exp {(1-o2u 1) ¥/202)

x ¢ {{1-02u 1)/ V2] (4-102)
G (Z ) = Weah [ )2/2}(1 2 )1/2
E r,T 2‘1 EXp (".a(l)coh'r -Q wcohT
x exp {(1-a2mcoh'r)2/4a2} Ki/u {(l-azmcoh't)z/4a2} (4-103)

where oc(x) is the complementary error function
o (x) = & fexp (-y2)dy
vr X
and Kl/q(X) is the modified Bessel function (Abramowitz and Stegun, 1965).

4.3.1 Limiting Values

It is apparent that the power impulse response function G
depends upon the parameter o defined by Equation 4-98. Using Equation
4-74 for weop it can readily be shown that

’AZkztzr

05 —— (4-104)
"Ao(zt+zr)
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Thus o is a reciprocal quantity and does not depend on the relative place-
ment of the transmitter and receiver.

For a Gaussian irregularity spectrum the values of A, and Aé are
obtained from Equations 4-38 and 4-39 and

>‘°¢Zt Zr

2
nLO(Z +Zr)

(Gaussian PSD) (4-105)
t

For a K=" in situ three-dimensional electron density spectrum or a K~ 3
one-dimensional phase PSD, Equations 4-44 and 4-45 give A, and A, with the
result

an(L /2.)re 2,2
as—nt 1 0LT (-4 psD) (4-106)

2
2"L0(2t+zr)

It is apparent that o is a measure of the severity of the scattering since
it is directly proportional to the phase standard deviation. Recalling
from Section 2.3 that the focal distance of a Gaussian lens is given as

F = nl2/20

where L, is the scale size and ¢, is the peak phese, it is seen that o is
proportional to Z/F where Z is the effective propagation distance. Here
the peak phase for a single lens, ¢4, and the phase standard deviation,
o,, are taken as roughly equivalent. Thus iarge values of « correspond
to situations where Z >> F and phase fluctuations have been fully con-
verted to amplitude fluctuaticrz through the process of diffraction.
Small values of « correspond to situations where phase fluctuations have
not yet been converted to amplitude fluctuations, as would occur close to
a random phase-screen. Thus the value of o is a measure of the relative
importance of scatter.ng and dispersion with large values indicating
strong scattering effects and small values indicating strong dispersive
effects.
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In order to calculate the power impulse response function in the
large o 1imit it is convenient to write Equation 4-101 as

6,(2.,7) =ffSI(KC,Kn,zr,r)dK¢dKn (4-107)

=00 00

where S; is given in the thin phase-screen approximation by Equation
4-96. For large values of o it can be shown (Stakgold, 1967, p.21)

Tim & exp {-o2x2} = ()
e Y

Thus for large o the generalized power spectrum of Equation 4-96 is given
by

2
: - wCOhg'O 2212\ 02
lE: SI(K;’Kn’Zr’T) = T exp {- (K;+Kn)2o/4}
x 8 t—g(w”hr - (K2 2)92/4) (4-108)

In this case the integration specified by Equation 4-107 can easily be
performed with the result

U.)coh GXP (-wcoh‘t) Y T > 0

1im GI(zr,r) = (4-109)

[o & o]

0 s, 1<0

For the case of infinitely elongated irregularities it is recognized that
the generalized power spectrum can be written as

“eoh %o

1im SE(K;’Zr’T) = POTERYES

o

exp {- K§z§/4}

« 611 (wont - K222/4) (4-110)
V2
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With this simplification in mind the power impulse response
function is easily found from Equation 4-101

(wcoh/m)l/2 exp (~uont) » 120
lim G.(z ,7) = 4-111
Him £(207) ( )
0 s <0

Equations 4-109 and 4-111 give the power impulse response func-
tion for the case of large o where scattering and diffraction effects dom-
inate dispersive or phase effects.

In the limit of small a, corresponding to the case that disper-
sion dominates over diffraction, the generalized power spectra of
Equations 4-97 and 4-99 take on the identical form

Tim S (K ,z_,1) = Vim S.(K ,z_,1)
00 IMcr o0 EV g r

“wcohzo
23;21r

exp - K203/8 - oPucdpe?/2}  (4-112)

Equation 4-112 follows directly from Equation 4-97 for Sg. For the case
of isotropic irregularities, Equation 4-112 follows from Equation 4-99
where use is made of the fact that

lig {exp (B2/442) Kl/u( 82/4a2)} = /Zn-g-

Equations 4-101 and 4-112 may then be combined to obtain the power impulse
response function in the limit that dispersion is dominant. That is.

. @%oh 2
llg GI(zr’T) = = exp {'(“wbth) /2}
= 1im G.(z_,7) (4-113)
0 £ r
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It is noted that Equation 4-13 gives a Fourier transformation

relationship between r and G. The inverse transform may be evaluated at
zero wy with the result

I‘(AF=O,Zr,wd=0) =:£ G(Zr,r)dr (4-114)

Since r(O,zr,O) is unity, the above equation provides a check on the
derivation., It is easily shown that all the expressions for the impulse
| response given here obey the normalization condition of Equation 4-114.

Figures 4-2 and 4-3 show the power impulse response function for
values of o of 1, 3, 10, and 100 for the case of isotropic irregularities
and for o values of 1, 3, and 10 for the case of elongated irregularities.
These curves are plotted directly from Equations 4-102 and 4-103; conse-
quently the figures strictly apply to cases where thz thin phase-screen

approximation is valid. However, as will be seen in the followinz, this
restriction is a minor one.
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Figure 4-2. Powgr.impqlse response function for isotropic irregu-
larities in the thin phase-screen approximation.
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Figure 4-3. Power impulse response function for elongated irregu-

larities-in the thin phase-screen approximation.
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Figure 4-4. Power impulse response function for isotropic and elongated
irregularities in the thin phase-screen approximation.
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In order to simplify the presentation of these results, the
power impulse response function is normalized by dividing by the coherence

;f bandwidth and choosing wyont as the abscissa. In both figures it is

§ apparent that the power impulse response function changes from a roughiy

- Gaussian shape at unity a to an exponential shape for larger a. In the

; case of isotropic irregularities, the power impulse response function is

5 very close to its asymptotic exponential form for a value of o of 100.

} Figure 4-4 shows the power impulse response function for the

3 case of « < 0.01. Note that a different convention is used for plotting

: purposes than is used in the previous two figures. For this range of «

i dispersive effects are dominant and the isotropic and elongated irregular-

-f ity cases are identical. For o« < 0.01 it is evident that the small a,

§ asymptotic form of the power impulse response function, given by Equation

b 4-113, is reached for a = 0.01. Equation 4-98, which defines o, may be

b rewritten as

! )

}; Aeop T wo/0¢

', i
f For most cases of interest involving lossless propagation through ijoniza- é
o tion, the carrier frequency is large with respect to the phase standard ki
§~ deviation and the right-hand side of the above expression is large. In %
é that case the 1imit of small « corresponds to the 1imit >f large coherence %
o bandwidth, wegn. Thus g
i, LY
Y lim 6. (z ,7) = Tim G (z,7) (4-115) %
i o0 Ycoh™ g
2 The expression on the “ight-hand side of Equation 4-115 is recognized from §
L§A Equation 4-113 as a Dirac delta function (Stakgold, 1967, p. 21), which %
< may be written as 3
. 3
9 i
- Tim GI(ZroT) = §(1) (4-116) %
. - Yeoh™® §
4 Thus in the small o limit, dispersion or phase effects dominate, and the %
ﬁ power impulse response function is a delta function. g
3
, 3
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4.4 MEAN TIME DELAY AND TIME DELAY JITTER

Two important measures of the effect of scintillation on wide
bandwidth signals are the mean time delay and the time delay jitter.
The mean time delay and time delay jitter of the received signal may be
obtained (Yeh and Liu, 1977) or these measurements may be applied directly
to the power impulse response function to obtain results which are indeed
measurements of the propagation channel. With the latter approach in mind
define

<o = [ 6(z,,1)dr (4-117) ;
-0 %

g

® {

of = f'tZG(zr,-r)d-r - <2 {4-118)

T s

The mean time delay and the time delay jitter are functions of the re-
ceiver location but this functional dependence is omitted here for economy
of notation. The mean time delay and the time delay jitter are simply
related to the two-frequency mutual coherence function since from Equation

4-13

A AN Ny THR AN KLY

a3,

iw,T

6z, 1) = - S E0, 0,2, uy)e 4 du, (4-13)

o dAn e s

St

Both integrals 4-117 and 4-118 may be performed directly since the 1 inte-
grations yield Dirac delta functions or a derivative of a Dirac delta
function. The results are

4 e 3TN 2o 1

. 9T

=i (4-119) i
dw d w ao g“
1
a2r ar 2 i
- S o +  — - H
% awdz wd=0 awd wd=0 (4-120) f
H
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Equations 4-119 and 4-120 are general results and apply to both elongated
and isotropic irregularities and are not limited to the case of a thin
phase-screen.

4.4.1 Mean Time Delay <v>

Equation 4-119 may be easily appiied to the two-frequency mutual
coherence functions given by Equations 4-71 and 4-72 and results obtained
that are valid for the thick layer geometry shown in Figure 3-1. After
much algebra the results are found to be

] °$'A2' Gztzzr+L(9ztzr-3z€)+L2(32r-52t)-2L3

3k2cA (zytz,)(z44L)
0 0
<> = %<TI> (4-122)

An intuitive explanation for the factor of one-half in ths relationship
between the mean time delay for isotropic and elongated irregularities is
that the elongated irregularities cause scattering in cnly one plane
whereas isotropic irregularities cause scattering in toth planes
perpendicular to the propagation path.

£
H
P
b
)
i
b
{
b
§
4

It is noted that the expression given in Equation 4-121 is
reciprocal. Interchange of transmitter and receiver is accomplished by
the substitutions

R VTN

z; = 2 -l (4-123)

2! =z +L (4-124)

[ P I RV

where the prime quantities are the values after the interchange. These
equations apply to the thick scattering layer geometry shown in Figure :
3-1.

For a transmitted plane wave zt increases to infinity and ;

the mean time delay simplifies to
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HEN
Tim <z,> = 21 2! (27 L) (4-125)

Z, > I kZCA r

t 00
This result can be shown to be identical to Equation 54 of Yeh and Liu,
1977 neglecting contributions from the transmitted signal in the referenc-
ed work. Now for a transmitted plane wave and the thin phase-screen
approximation, L in Equation 4-125 is neglected and

202|A
Tim <> = %l

> (4-126)
Ztno kOCAO

zreff

where the receiver location in the thin phase-screen approximation is
written as z £ to indicate that the receiver location may depend on

the thickness of the scattering layer to be represented by an equivalent
thin screen. One logical location for a thin phase-screen chosen to
represent a thick layer is the center of the original layer. In this case

o —
—

Zoars = Zp " (4-127)

For this choice, and the case of an incident piane wave, the phase-screen
approximation, Equation 4-126, gives a result identical to the exact
calculation, Equation 4-125.

In the more general spherical wave case the thin phase-screen
1imit is obtained by setting the layer thickness L equal to zero in
Equation 4-121 and taking 2, and 2,35 2 0 and Z.off to indicate that

these values depend on the original layer thickness. The result may be
written as

2
- 2°¢|A2' Zteff Zreff
2
kecA,

<ty (4-128)

I .
(2,065 * Zpeff)
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which is reciprocal as it should be. Now to locate a thin phase-screen at
the center of a layer of thickness L let

=z +L/2 (4-129)

Lioff T %t

2 5 =% " L/2 (4-130)

It is quickly shown that the resulting expression for the mean time delay

o?|A | [4z.z2,+2L(z.-2,)-L?
2k0CA° zr+zt

<t

I

is not identical to the original thick layer result, Equation 4-121, in
the general spherical wave case.

In summary, the thin phase-screen result for the mean time-delay
js exact for plane wave propagation, but not for the more general case of
spherical wave propagation. The full expression given by Equation 4-121
is valid for a thick layer and spherical wave propagation.

Another choice of a thin phase-screen location is discussed by
Fante (1981) where it is shown that the location may be chosen as a
function of the PSD to give the exact result for ope However this
choice of location does not give the correct result for the two-position
mutual coherence function.

4.4.2 <t> and a - Thin Phase-Screen Approximation

In the thin phase-screen approximation the simplified
expressions for r. and Te given by Equations 4-75 and 4-76 may be
used in Equations 4-119 and 4-120 to compute the mean time delay and
time delay jitter. The results are the following expressions

Gp = g, (4-132)

$rg> = I/ZwCOh (4-133)
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o) (@-138)
®7 Weoh

o2 =(.;_ + _1.2.) 21 (4-135)
o/ 9%oh

where the parameters u and o are defined in Equations 4-74 and 4-98
respectively. In the following these simple expressions for the thin
phase-screen approximtion are compared to exact results for a thick
scattering layer. It will be shown that the thin phase-screen calcula-
tions of the mean time delay and the time delay jitter are valid under a
wide range of conditions and are therefore very useful.

4.5 VALIDITY OF THE THIN PHASE-SCREEN APPROXIMATION .

In the following sections of this report the validity of the
thin phase-screen approx imation is investigated for calculations of the
scintillation index in the weak-scatter approximation (Salpeter, 1967) and
for the mean time delay and time delay jitter in the strong scatter
1imit. The scintillation index calculation is included here because this
result is important for the statistical signal generation technique
described in Section 3 of this report. The results inclua. ! here are
somewhat similar to those developed by Wernick, et al. (1973) with the
difference that the results shown here model a thick layer with a len-
trally located phase-screen as opposed to a phase-screen located at the
layer bottom. It can easily be demonstrated that the centrally located
phase-screen gives better agreement with exact weak-scattering calcula-

tions.

The geometry under consideration is shown in Figure 3-1 with the
single exception that the transmitted wave is assumed plane so that the
transmitter is located at infinity. This transmitter placement is solely
for analytical convenience in this subsection.
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4.5.1 SE-Rytov Approximation

SRR Rt ST AR S

From Tatarskii (1967, Equation 7.21) the perturbation of the
logarithm of the electric field in the Rytov approximation is given as

e B RIS,

k2 [ 4 e-1klr-r |
¥T) = 5 W (v = (4-136)

i The unperturbed incident field uo(Tﬁ is here taken as a plane wave travel-
ing in the positive z direction

uo(?) = exp{-ikz} (4-137)

an(¥) is the variation in the index-of-refraction and the integration is
over the entire extent of the fluctuations.

T L R T A e A e IR TN AT AT

As usual the factor |F-¥| in the exponential is expanded in the
Fresnel approximation as

R T e K Gl ?.3»"

Forr | = (2-2') + (x'x;2§f£¥;")2 (4-138)

and as z-z' in the denominator. Expression 4-138 is valid as long as the
wavelength, A, is less than the inner scale size, 2, so that the
scattering of even the smallest eddies is in the forward direction (Fante,

N AT T e < S 5 Samer o

1975). :

.ﬁ Substituting the incident field into the integral expression %
3 given by Equation 4-136, one obtains %
':_ . ‘:5
:; “r kz - 12 E
3 4(0,0,2) = X2 [ an(rry EX0A-TKK By 2)/2(22" )} gy (4,130 é
. 2 (z-2") %
7

The mean-square log-amplitude fluctuation is given as §

; 4
e 3
% o2 = <(Rey)® (4-140) 3
4 X 9
5 187 ;
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and depends upon the correlation function of the index-of-refraction
fluctuations which can be written as

()@ = [ s ®e Kertert) (4-141)

Now assume that the irregularities are uncorrelated in the direction of
propagation (this simplifying assumption is equivalent to the Markov
approximation; Fante, 1975) so that

<an(v')an(r")> = 8(z2'-2") A(p'-p",2")

(")

2n8(z -z")fS Kz=0;z')e df_l_

n

(4-142)

Here o and K are the vector and associated wavenumber in the plane normal
to the direction of propagation. It is evident that the spectra S (K) and
Sn(K¢,K =0;z') must be both real and even for Equations 4-141 and 4 142 to
be val1d.

Thus from Equation 4-139, the log-amplitude fluctuation x or the
real part of y wmay be written as

k2 an(F) cos[k(x' 2y'?)/2(z.-2")]
x(0,0,2,) = > J o= dv' (4-143)

Utilizing Equation 4-142 for the correlation function of the index-of-
refraction fluctuations, one obtains the mean-square log-amplitude fluctu-
ation

o ]E-L. (-‘;i_;n)

@' v Sz dK, S, (K, .K,=0;2"
f f (Zr-z‘)(zr-z") :[ Ky sn( TRL P ET )e

fi

x cos[k(x'2~y'2)/2(zr-z')] cos[k(x"2+y"2)/2(zr-z")] (4-144)
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The exponential factor may be expanded as cos[Kx(x‘-x")+K (y'-y")] -and a1l
integrations may be easily done with the aid of a table b¥ integrals to
obtain

L © -
2 2 ) 020y _ 2,42 -
of = 2nk _{dz' :[ dk, Sp(Ky,052') sin®[(z,-2') (KZ+KT)/2K] (4-145)

Now a general mathematical description for threc-dimensional
index-of-refraction fluctuations subject to a Gaussian power spectrum is
given by

L3s2
Ty - . on w2y 242,02y 2 .
Sn(K,z ) = ¢ 3 exp{ Kite Ky+Kz)Lo/4} (4-146)

where e represents an elongation factor. The limit as e approaches
infinity corresponds to the case of elongated irregularities. A value of
unity for e corrasponds to isotrovic fluctuations perpendicular to the
direction of propagation. Note that the normalization here is such that

T Tt VA = 2 .
_[ s,(Ksz')dK = o2 (4-147)

For the case of isotropic irregularities the integral can be
performed by transforming to polar coordinates. For elongated irregulari-
ties the integration is more complex and the limit as ¢ tends to infinity
must be taken after performing the K  integration. Then perform the
2' integration and finally the Kx in%egration to obtain

Say 2o§> {1 +Tls[ [tan-? 4(g-g ) - tan'1(4sz)]$ (4-148)

1 .ol - -
S3 = 202 {1 tgpm (111606, ) )Y sin (5 tan™! 4(g,-5)))

¢ L
- (1+1ag§)1/" sin(—;- tan-! 4:,2)]} (4-149)
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where the weak scattering approximation

2 2 a2 -

S4 40X (4-150)

has been utilized to obtain the scintillation index and the substitution
2 = 2 2 -

o¢ /T k LLoon (4-151)

which is valid for a Gaussian PSD has been utilized. The subscripts I and
E refer to the case of isotropic and elongated irregularities,
respectively. For ease of notation the additional substitutions

3

2 Azr/ZnLg (4-152)

&L AL/ZnLg (4-153)

have been incorporated into Equations 4-148 and 4-149, Equations 4-148
and 4-149 are the expressions for the scintillation index for a thick
layer in the Rytov approximation.

4.5.2 Sf-Thin Phase-Screen Approximation

The thin phase-screen results for the scintillation index may be
obtained directly from Salpeter (1967) as

2 24 [ 2 [(K24K2 i
S =4 ;Z.S¢(Kx'Ky) sin? [(K2K2)z /2] dK 4K (4-154)
2 = by, 2 2 .
S = 4 S 5,(K,) sin? [Kiz /K] ok, (4-155)

where z, is the distance from the phase-screen to the observer and the
phase power spectral density is given by

L242
= 0¢
S¢(Kx,Ky)

exp{- (K)f+|<§)L§/4} (4-156)

1)
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L g2 &
= _0%9 aynlo K22 . i
S¢(Kx) T exp| KxL°/4} (4-157) :

Equation 4-157 is the one-dimensional -equivalent to the power spectral :
density given by Equation 4-156. The final results for the scintillation
index in the weak-scatter, thin phase-screen approximation are then

S = 202 [1 - (141683)"] (4-158) ;
St = 202 [1 - (1416527 V/ cos(% tan! 45,)] (4-159)
where §
£ = A2g/21L2 (4-160) f

In the following subsection, the results for the scintillation
index in the thick layer Rytov approximation are compared to the above
results in the thin phase-screen approximation. For the purposes of the
comparison it is assumed that the phase-screen is located at the center of
the thick layer, that is

. 1
2,2, - 3 L (4-161)

4.5.3 Comparison of Results

Figures 4-5 and 4-6 show the thick layer results for the
normalized scintillation index S,//2¢ as a functioz of the normalized
free-space propagation distance x(zr-I?)/an2 for values of the normalized
layer thickness £ ranging from 0.0001 to 13. Figure 4-5 is a direct plot
of the results of Equation 4-148 and is valid for isotropic irregulari-
ties. Figure 4-6 is a plot of the results of Equation 4-149 and is valid
for infinitely elongated irregularities.

As shown in these two figures the value of S,/v/2 o peaks at
unity for x(zr-L)/ZnLg large.For values of normalized qayer ghickness, &
smaller than the normalized free-space propagation distance £ by a
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Figure 4-6. Rytov approximation to scintillation index for elongated
irregularities with a Gaussian PSD.
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factor of ten or more, the actual layer thickness is unimportant and the
result is independent of layer thickness for very small layer thickness.
One must be careful not to use the results shown in theése two figures as
evidence that the thin phase-screen approximation is useful only for
situations where the normalized free-space propagation distance is ten or
more times the normalized layer thickness.

Figures 4-7 and 4-8 show the differences between the scintilla-
tion index calculation in the Rytov approximation and in the thin phase-
screen approximation where the phase-screen is located at the center of
the original thick layer. The abscissa is the normalized free-space
propagation distance, Ez'EL’ and the ordinate is the error quantity

S2(Rytov) - S3(phase-screen) |/2
4 4
Sf(Rytov)

plotted in percent. Values of the normalized layer thickness, £, shown
here range from 0.0001 to 10. In all cases the error is small even when
the normalized free-space prop2gation distance and the normalized layer
thickness are identical. For a fixed normalized layer thickness the dif-
ference between the two approximations increases with decreasing normal-
ized free-space propagation distance until a fixed maximum difference is
reached, This fixed maximun difference corresponus to the thick laver
geometry where the receiver is located at the edge of the original thick
layer, that is at z. = L. Note that the value of the maximum difference
depends on the normalized thickness as is shown further in the next two
figures.

Figures 4-9 and 4-10 show the values of the percent difference
between the Rytov thick layer calculation of S, and the thin phase-
screen calculation of Sq for a thick layer geometry in which the
receiver is located at the edge of the scattering layer, that is
£, = g in Equations 4-148 and 4-149., In the thin phase-screen
approximation the phase-screen is located at the center of the layer so
that £, = £ /2 in Equations 4-158 and 4-159. Ir both the case of
isotropic irregularities (Figure 4-9), and the case of infinitely
elongated irregularities (Figure 4-10), the maximum difference is fifty
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Figure 4-7. Percent difference in S, between the Rytov and the thin
phase-screen approximation, isotropic irregularities.
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Figure 4-8. Percent difference in S, between the Rytov and the thin
phase-screen approximation, elongated irregularities.
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percent. This difference reflects the worst case accuracy of the thin
phase-screen approximation in the weak scattering regime, Note that the
difference has a minimum in both figures corresponding to points where the
thin phase-screen approximation gives a result identical to the Rytov
approximation.

In Section 3 of this report the thin phase-screen approximatisn
is used to determine the onset of severe scintillation defined as the
point. at which the scintillation index has a value of 0.5. For this
purpose, a maximun difference of fifty percent, when compared to the more
complicated Rytov approximation, is considered acceptable,

These brief results illustrate the following points regarding
the use of the thin phase-screen approximation for weak scattering.
First, the accuracy of the thin phase-screen approximation for a thick
layer is dependent on the relative lengths of the free-space propagation
path and of the propagation path through the turbulent ionized layer.
Second, for a free-space propagation distance ten or more times larger
than the layer thickness, the thin phase-screen approximation is an
accurate model of a thick layer with five percent or less error for 54.
Third, for equal propagation distances in free-space and through the thick
Yayer, the error in the thin phase-screen approximation is small. Fourth,
for a thin phase-screen centrally located to replace a thick layer, the
accuracy of the thin phase-screen approximation is a function of the nor-
malized layer thickness ELe The maximum error in S4 is fifty percent.

Therefore the thin phase-screen approximation is a useful,
accurate tool to use to determine the onset of severe Rayleigh scintilla-
tion for the purposes of statistical signal generation.

4.5.4 <> and ¢, - Thick Layer Versus Thin Screen

In this section the simplified results for <¢>, the mean time
delay, and O the time delay jitter, both in the thin phase-screen
approximation, are compared to exact results in the strong scatter
approximation obtained from Equations 4-117 and 4-118 by integrating the
exact power impulse response function. For the exact calculation the
power impulse response function is obtained by numerically taking the
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Fourier transform of the two-frequency mutuai coherence function as
specified by Equation 4-13. The required two-frequency mutual coherence
function is evaluated numerically in the general case of a thick
scattering layer from Equations 4-71 and 4-72 for isotropic and elongated
irregularities, respectively. Then <t> and o, are obtained by
numerically integrating according to Equations 4-117 and 4-118.

In all cases in this subsection the geometry under consideration
is shown in Figure 3-1. For convenience the transmitter distance z, is
t aken as infinity so that the incident wave is plane. The layer thickness
is L and the free-space propagation distance outside the layer is z.-L.
A K="% three-dimensional irregularity spectrum is used with a ratio of
outer scale to inner scale of 100.

In the thin phase-screen approximation the important parameters

3 0g» Ueoh and « have simple expressions for the geometry of interest,

2« 2(xr )2 LL o2 ]

ij % Z(M‘e) LLOONG (4-53)
% 21w L2

E “eoh ~ =2 3 (4-162)
4 zn(Lo/zi)xzro¢

: (L /2;)

2 N L:)202 0

an T (4-163)
% ZnLo

i

Equations 4-162 and 4-163 are obtained directly from Equations 4-74 and
4-106, For steeper spectra the constants in these expressions take on
different values but the basic algebraic dependence on the important quan-
tities 1z./L,% and o, remains unchanged. The expression for w.qh

may be substituted into Equations 4-132 and 4-134 to obtain for the thin
phase-screen case and isotropic irregularities
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<tI>w° _ zn(Lo/li)AZreff
2 2
a¢ ZnLo

S 14 L\ V2 o 2kl 200 g (4-165)
a; al 2nLg

(4-164)

For elongated irregularities, Equations 4-133, 4-134, and 4-162 yield

<TE>wo 1 zn(Lo/zi)xzreff (4-166)
2 2
0¢ 2 21|Lo
OTEwO (l + _1_- -1/2 = m(Lo/"i)ureff (4"167)
cg 2 a? ) 2wL§

To model a layer of thickness L with transmitter at infinity and receiver
located a distance z. from the entrance to the layer, a thin phase-
screen located at the layer center has

Zoogs * 4 - L2 (4-168)

in Equations 4-164 to 4-167.

Therefore, based on the thin phase-screen results of Equations

4-164 to 4-167, it is convenient to plot the expressions on the left-hand
side of the four equations.

Figure 4-11 shows the normalized mean time delay for isotropic
irregularities

2
<Tl>wo/°¢
as a function of the normalized free-space propagation distance Ex-EL

for values of the normalized layer thickness g ranging from 10~ to
10. As defined previously
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Results applicable to the case of elongated irregularities may be obtaiied
by dividing the ordinate by two, It is apparent from the figures that for
any given free-space propagation distance, the value of the normalized
mean time delay converges to the thin phase-screen result as g de-
creases.

For a constant value of the normalized layer thickness, EL’ the
normalized mean time delay becomes a constant function of g,-¢ for
values of the normalized free-space propagation distance less than about
one-tenth of the normalized layer thickness. This situation corresponds
to a thick scattering layer with very small free-space propagation dis-
tance so that changes in the free-space propagation distance are unimpor-
tant and do not affect the geometry.

Figure 4-12 shows the normalized time delay jitter

2 1 \Y2
°rI“’o/°¢ (1 + :f)

as a function of the normalized free-space propagation distance, gz-gL.
Values of the normalized layer thickness g ranging from 10-6 to 10 are
shown. The general appearance of this figure is similar to that of the
previous figure., The limiting behavior described above for decreasing
layer thickness at a constant free-space propagation distance and for de-
creasing free-space propagation distance at a constant layer thickness
also occurs in Figure 4-12. That is, for a given normalized free-space
propagation distance, the normalized time delay jitter converges to the
thin phase-screen result as the normalized layer thickness decreases. For
a constant value of normalized layer thickness, the normalized time delay
jitter reaches a constant value for normalized free-space propagation dis-
tance values less than about one-tenth of the normalized layer thickness.
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Figure 4-12 is also valid for the case of infinitely elongated
irregularities where the ordinate in this case is

. 1/2
: o _[o? l+_1._.
€70/ ¢ 2 o2

At this point consider the calculation of the difference between
the exact thick layzr results and the thin phase-screen results for values
i of the mean time delay and time delay jitter., It was shown previously in
i Section 4.4.1 that both calculations yield the same value of the mean time
‘ delay. It is also apparent that this comparison is also available for the

time delay jitter for a few values of normalized layer thickness from the

curves of Figure 4-12. To make such a comparison it is important to modi-
; fy the effective free-space propagation distance shown on the abscissa so
that the thin phase-screen is located at the center of the original thick
scattering layer,

Figure 4-13 shows values of the difference between the exact
strong scatter calculation and the thin phase-screen approximation

Sl A ALK, B MLy MM IR M I ML I

- -— ”
o (2] o

o, DIFFERENCE (percent)

o

10~ 10°3

10-2 T 1e° , 10’ 162 0°
Nz,~L)/2nL?
Figure 4-13. Relatiye time delay jitter accuracy of the thin phase-screen
approximation, isotropic irregularities, ¢ = 100.
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IoTI(exact) - cTI(phase-screen)|

' oTI(exact) ‘

plotted in percent as a function of normalized layer thickness and nor-
malized free-space propagation distance. Figure 4-13 applies to the case
of isotropic irregularities and is restricted to a value of « of 100.
Values of the normalized layer thickness g range from 10-* to 10. It

can be seen that for values of the normalized layer thickness less than or

f; | equal to the normalized free-space propagation distance, the difference is
bl ! at most about 10 percent. The maximum difference is independent of layer
Y thickness and is 22.5 percent. This maximum difference corresponds to the

case of a receiver located at the exit of the thick layer with zero free-
space propagation distance. As in the preceding calculation of the thin
phase-screen approximation to the scintillation index, this geometry is
the most difficult to model with a centrally located phase-screen,

: Figure 4-14 shows another comparison of the accuracy of the time
.ﬁ delay jitter calculation in the thin phase-screen approximation., The cal-
ﬁ culations presented in this figure differ from the previous calculations

5 only in that the vaiue of the parameter o« is unity for Figure 4-14. It is
} apparent that the thin phase-screen approximation is more accurate for

7?_ this decreased value of the parameter o with a maximum difference of about
& 9.5 percent for unity a.

%’ Figure 4-15 shows the difference between the exact strony scat-
1 ter results and the thin phase-screen results for the time delay jitter

f for elongated irregularities and unity a. The general behavior noted in
3 the two previous figures is again observed here. The maximum time delay
} jitter difference is now decreased to about 6 percent for this eiongated

: irregularity case.

4 The previous three figures show that the maximum difference in

% ) the time delay jitter calculation, caused by modeling a thick scattering

,% layer as a thin phase-screen located at the center of the layer, is a

function of the parameter a.
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Figures 4-16 and 4-17 show the maximum error

|°r(thiCk layer) - cT(phase-screen)l

l cT(thick layer) '

in percent for the isotropic and elongated irregularity cases, respective-
ly. These curves were obtained by taking a value of the normalized layer
thickness, g, of 10 and a very small value of the free-space propaga-
tion distance, g,-¢ , of 106, This case yields the desired masximum
difference. It can be seen in both figures that the error decreases to
zero for values of o less than unity and reaches the maximum value of 22.5
percent for values of o of about 10 and greater. It was noted in Section
4.3.1 that « is proportional to the quantity z./F where z, is the
propagation distance and F is the focal distance. Hence for « small, the
receiver is "close to" the phase-screen and dispersive effects dominate
diffractive effects. In this case the time delay fluctuations are caused
by large-scale phase fluctuations and are well modeled by a thin phase-
screen. For o large, diffraction is more important than dispersion and a
single phase-screen model of a thick layer is relatively less accurate.

It should be emphasized that the maximum error in o, caused by
modeling a thick layer by a thin phase-screen is 22.5 percent. This error
appears to be modest relative to uncertainties in the knowledge of the
propagation environment in the case of strong scattering.

As a final comparison of the accuracy of the thin phase-screen
approximation to calculate the time domain properties of a wide bandwidth
waveform subject to strong scattering, consider the effects of the approx-
imation on the power impulse response function Gy(zp.,t). Figures 4-18
to 4-20 show the power impulse response function for isotropic irregular-
ities for a thick layer and its thin phase-screen equivalent. The
abscissa and ordinate are normalized by multiplying and dividing by
weohe In all three figures the results correspond to a value of q of
3 where scattering effects slightly dominate dispersive effects. In all
three figures the normalized free-space propagation distance, g,-¢|,
is unity; the normalized layer thickness, g, takes on values of 0.1,
1.0, and 10 in the three figures. The thin phase-screen equivalents thus
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have zero layer thickness and values of the effective normalized propaga-
tion distance between phase-screen and receiver of 1.005, 1.5, and 6
respectively. These values are computed directly from Equation 4-168.

In Figure 4-18 the layer thickness is smali relative to the
free-space propagation distance and the impulse response function is exact
for the thin phase-screen approximation to this layer.

In Figure 4-19 the layer thickness and the free-space propaga-
tion distance are identical. The power impulse response function for the
thick Tayer is quite similar to that of the thin phase-screen approxima-
tion in this case with no difference in the mean time delay and a 9.6
percent difference in the time delay jitter.

In Figure 4-20 the layer thickness is ten times the free-space
propagation distance with a resulting 19 percent error in the result for
o, obtained in the thin phase-screen approximation.
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Figure 4-18. Comparison of power impulse response function, thin
phase-screen versus thick layer.
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Results of this subsection show that the thin phase-screen
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j approximation gives an adequate approximation to the exact, strong scatter
7 result for time delay jitter. It has also been shown that the thin-phase
‘ screen approximation provides an accurate approximation to the power
o impulse response function and thus may be used as the basis for the sta-
S tistical generation of signals as discussed in Section 3 of this report.
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APPENDIX A

A.1l EVALUATION OF THE GENERALIZED POHEﬁ SPECTRUM S(K, 1)
A.l.1 Numerical Method

In this appendix the generalized power spectrum, as calculated
in Section 4 in the thin phase-screen approximation, is evaluated for a
number of interesting conditions. The evaluation of S(K,r) is somewhat
tedious as is seen here but is, of course, quite necessary for the calcu-
lation of statistical realizations of the impulse response function. In
the thin phase-screen approximation the generalized power spectrum is
given by Equations 4-97 and 4-99 repeated here for convenience

23/2, 4 2 4 )
(K1) = EI/_:%’.*‘;E exp g % K222 - .;. o? [% Kzzg-mwhr]Z}
x exp (8%/4a2)K,/ ,(82/442) (A-2)
where
B = a2 [i. K232- -CohT] +1 (A-3)

Equation A-1 gives the generalized power spectrum for elongated
irregularities and is appropriate for the two-dimensional geometry solved
by the MPS propagation simulation. This equation is easy to evaluate
numerically.
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Equation A-2 gives the generalized power spectrum for the case
of isotropic irregularities and is somewhat more difficult to evaluate.
It is convenient to consider four cases and use different, efficient eval-
uation algorithms for each case.

Case 1: 0 < 2/442 < 3.5

For 2/44% between zero and 3.5, Sy(K,t) is easily evaluated
since in this range the Ki/u Bessel function may be directly cal-
culated using the expressions

I -1
(z) =1 (M) (A-4)

v 2 Sinvn
1(2) = (2/2)" 3 _ 2k (A-5)

k=0 k!r(wvtk+l)

which are taken directly from Abramowitz and Stegun, 1964. For z < 3.5
sufficient accuracy is obtained using at most twelve terms in the
convergent series given by A-4, The r function required in Equation A-5
is available on most computer systems and is also given in Abramowitz and
Stegun.

Case 2: g%/44% > 3.5

For g2/442 > 3.5 it is necessary to use the asymptotic
expansion for the factor

exp (8%/40%) Ky/y (8%/40%)
which has the form

e’k (2) = (n/22)Y/2{1 + w-l , (w-1)(u-9)

8z 2!(82)?
¢ D) (u-9)(u-25) | (A-6)
3!(8z)3
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where y = 4v2, Equation A-6 is taken-directly from 9.7.2 in Abramowitz
and Stegun.

Cases 3 and 4: g less than zero
For g negative it is necessary to carefully evaluate the term
812 Kyy,(82/402)

This is easily done with the aid of Equation 9.6.31 from Abramowitz and
Stegun. The result is found as

81/2 Ki/y (32/40‘2) =
181/ 2Ky u(8%/40%) + /2 1y (8%/462)} B <O (A7)

Also one needs the identity

2 L4 a?

2
1(p-1).8 (A-8)
a? 2 4 o2

Substituting Equation A-7 into the expression for SI(K,r) and replacing
the appropriate factors in the exponent by use of A-8, one obtains for
g<0

2
al [% Kzzg-wcohr] }exp (82/4a2)K1/..( 82/40?

+ 2V 2% exp L ( --%) exp (-8%/40%)11/,(8%/40%) 7 (A-9)
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Case 3: 8 < 0, 0 < p%/4a? < 3.5

For g negative and g%/442 < 3.5 accurate results can be obtained

using the convergent series for K,/, and I/, given by Equations A-4 and
A-5 to evaluate the expression for the generalized power spectrum given by

A-9.
Case 4: g < 0, B%/4a? > 3.5

For B negative and g%/4q2 greater than 3.5 use of the convergent
series expression becomes inefficient and causes inaccurate numerical
results. Instead use the asymptotic expansion given by Equation A-6 for

the term
exp (B2/40?) Ky, (8%/40?)

to evaluate the term with the K Bessel function. For the remaining term,
exp (- 8%/4a?) 1,/,(8%/44?)

use the asymptotic expression 9.7.1 in Abramowitz and Stegun.

21 (2) « {1 2wl (ee1) (u-9)
v ——

Y27z 8z  2!(8z2)2
o el (w-9) (w-25) (A-10)
31(82) 3

where p=4v2,

The numerical techniques described in this section enable
accurate and efficient evalistion of the generalized power spictra. In
the following subsection results for these functions are shown for a
number of different wvalues of the parameter q.
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A.1.2 Examples of S(K,t)

In this section plots of the generalized power spectra Sg(K,t)
and Sy(K,t) are shown as a function of the parameter 4. This parameter
is described in Section 4 where it is seen that « much less than unity
corresponds to the case where large scale phase effects and dispersion are
more important than angular scattering or diffraction. o greater than
unity corresponds to the case where diffraction provides the dominate
scattering mechanism.

Figures A-1 to A-20 show plots of the function SE(K,r) and
St(Kyx) for values of the parameter q of 10.0, 5.0, 1.0, 0.1, 0.01. In
all cases the generalized power spectra are plotted as a function of the
normalized variables oK and weopt. This is a convenient normalization
as can be readily seen from Equations A-1 and A-2. Two types of figures
are shown here, In one case contours of the generalized power spectra are
shown as functions of the two normalized variables 4K and weopt. A
second plot of S(K,t) is provided which gives a three-dimensional view of
this function to provide better understanding of the functional depend-
ences.

Figures A-1 to A-4 for a value of o of 10 shows the behavior of
the generalized power spectra for large a. The delta function behavior
for the case of elongated irregularities as given by Equation 4-110 is
shown in Figures A-1 and A-3. Recalling from Fourier analysis that the
variable K is related to the sine of the scattering angle, ¢ in the para-
bolic approximation, for small ¢

A A

Since the generalized power spectrum takes on the form

8 (%- Kzzoz' Coh'l')
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when diffractive or angular scattering effects are dominant, there is a
one-to-one correspondence between scattering angle and time delay. That
is,

k=+Zmgw=+2® , a»1 (A-12)
2 A
0

0f course, the resulting time domain power impulse response
function is the integral of the generalized power spectrum over all K or
equivalently, over all scattering angles (e.g., Equation 4-107).

The effect of the difference between isotropic irregularities
and infinitely elongated irregularities is also seen from a comparison of
Figures A-1 and A-3 versus A-2 and A-4., Notice that for the case of iso-
tropic irregularities, the characteristic horseshoe shape given by the
equation

=1 2,2

has a tendency to be filled in. For elongated irregularities, less energy
is present inside the horseshoe,

The reason for this difference is that angular scattering can
occur in only one plane for the case of infinitely elongated irregular-
ities. For large o and elongated irregularities a single time delay can
result from scattering at only two angles as specified by Equation A-12.
For isotropic irregularities, angular scattering occurs in two planes and
a large number of different scattering angles can yield the same time
delay even for large a. It is the angular scattering from the additional
plane which causes the horseshoe shaped figure to be filled in for the
case of isotropic irregularities,

Figures A-5 through A-16 show the development of the generalized
power spectra as the parameter « decreases from 5.0 to 0.1.
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Figures A-17 to A-20 for the case of o of 0.01 show the gener-
alized power spectra for the case where angular scattering is unimportant.
and large phase effects and dispersion are the dominant factor. As dis-
cussed earlier, the case of small a corresponds to the basic geometry
where the focal length of the irregularities is much larger than the prop-
agation distance to the receiver. Equivalently the receiver is located
very close to the scattering medium. In this case, the phase irregulari-
ties comprising the scattering layer appear as very large, frequency
selective lenses which cause little angular scattering but which may cause
different frequency components of a wide bandwidth waveform to propagate
at different velocities. These large phase excursions in the medium may
also cause large scale changes in the mean time delay. In either case the
generalized power spectrum for isotropic or elongated irregularities has
the Gaussian form given by Equation 4-112 and shown in Figures A-17 to
A-20.
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Figure A-10. Generalized power spectrum for isotropic irregularities,

a =1,
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Figure A-14. Generalized power spectrum for isotropic irregularities,
a= 0.1,
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